Matches in SemOpenAlex for { <https://semopenalex.org/work/W2921568231> ?p ?o ?g. }
- W2921568231 endingPage "381" @default.
- W2921568231 startingPage "371" @default.
- W2921568231 abstract "Digital pathology imaging enables valuable quantitative characterizations of tissue state at the sub-cellular level. While there is a growing set of methods for analysis of whole slide tissue images, many of them are sensitive to changes in input parameters. Evaluating how analysis results are affected by variations in input parameters is important for the development of robust methods. Executing algorithm sensitivity analyses by systematically varying input parameters is an expensive task because a single evaluation run with a moderate number of tissue images may take hours or days. Our work investigates the use of Surrogate Models (SMs) along with parallel execution to speed up parameter sensitivity analysis (SA). This approach significantly reduces the SA cost, because the SM execution is inexpensive. The evaluation of several SM strategies with two image segmentation workflows demonstrates that a SA study with SMs attains results close to a SA with real application runs (mean absolute error lower than 0.022), while the SM accelerates the SA execution by 51 × . We also show that, although the number of parameters in the example workflows is high, most of the uncertainty can be associated with a few parameters. In order to identify the impact of variations in segmentation results to downstream analyses, we carried out a survival analysis with 387 Lung Squamous Cell Carcinoma cases. This analysis was repeated using 3 values for the most significant parameters identified by the SA for the two segmentation algorithms; about 600 million cell nuclei were segmented per run. The results show that significance of the survival correlations of patient groups, assessed by a logrank test, are strongly affected by the segmentation parameter changes. This indicates that sensitivity analysis is an important tool for evaluating the stability of conclusions from image analyses." @default.
- W2921568231 created "2019-03-22" @default.
- W2921568231 creator A5001187815 @default.
- W2921568231 creator A5005717412 @default.
- W2921568231 creator A5037383891 @default.
- W2921568231 creator A5066949209 @default.
- W2921568231 creator A5072946826 @default.
- W2921568231 creator A5076465098 @default.
- W2921568231 creator A5086587069 @default.
- W2921568231 date "2019-05-01" @default.
- W2921568231 modified "2023-10-14" @default.
- W2921568231 title "Sensitivity analysis in digital pathology: Handling large number of parameters with compute expensive workflows" @default.
- W2921568231 cites W147243700 @default.
- W2921568231 cites W1548779692 @default.
- W2921568231 cites W1573878755 @default.
- W2921568231 cites W190927549 @default.
- W2921568231 cites W1911106672 @default.
- W2921568231 cites W1970022937 @default.
- W2921568231 cites W1972015756 @default.
- W2921568231 cites W1982434302 @default.
- W2921568231 cites W1982716740 @default.
- W2921568231 cites W1984753492 @default.
- W2921568231 cites W1987869189 @default.
- W2921568231 cites W1998317913 @default.
- W2921568231 cites W2013695155 @default.
- W2921568231 cites W2020211902 @default.
- W2921568231 cites W2022940082 @default.
- W2921568231 cites W2026645785 @default.
- W2921568231 cites W2029767409 @default.
- W2921568231 cites W2030644393 @default.
- W2921568231 cites W2039240409 @default.
- W2921568231 cites W2051765910 @default.
- W2921568231 cites W2060308777 @default.
- W2921568231 cites W2073943895 @default.
- W2921568231 cites W2075000871 @default.
- W2921568231 cites W2097486055 @default.
- W2921568231 cites W2101589741 @default.
- W2921568231 cites W2102148524 @default.
- W2921568231 cites W2102201073 @default.
- W2921568231 cites W2103243046 @default.
- W2921568231 cites W2105739910 @default.
- W2921568231 cites W2110243528 @default.
- W2921568231 cites W2113364578 @default.
- W2921568231 cites W2152397906 @default.
- W2921568231 cites W2161289668 @default.
- W2921568231 cites W2311537973 @default.
- W2921568231 cites W2514628397 @default.
- W2921568231 cites W2548982607 @default.
- W2921568231 cites W2570599740 @default.
- W2921568231 cites W2609921003 @default.
- W2921568231 cites W2757558149 @default.
- W2921568231 cites W2759868335 @default.
- W2921568231 cites W2761668583 @default.
- W2921568231 cites W2801820170 @default.
- W2921568231 cites W2807988936 @default.
- W2921568231 cites W2810349536 @default.
- W2921568231 cites W2907516957 @default.
- W2921568231 cites W999207820 @default.
- W2921568231 doi "https://doi.org/10.1016/j.compbiomed.2019.03.006" @default.
- W2921568231 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7363453" @default.
- W2921568231 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31054503" @default.
- W2921568231 hasPublicationYear "2019" @default.
- W2921568231 type Work @default.
- W2921568231 sameAs 2921568231 @default.
- W2921568231 citedByCount "2" @default.
- W2921568231 countsByYear W29215682312021 @default.
- W2921568231 countsByYear W29215682312022 @default.
- W2921568231 crossrefType "journal-article" @default.
- W2921568231 hasAuthorship W2921568231A5001187815 @default.
- W2921568231 hasAuthorship W2921568231A5005717412 @default.
- W2921568231 hasAuthorship W2921568231A5037383891 @default.
- W2921568231 hasAuthorship W2921568231A5066949209 @default.
- W2921568231 hasAuthorship W2921568231A5072946826 @default.
- W2921568231 hasAuthorship W2921568231A5076465098 @default.
- W2921568231 hasAuthorship W2921568231A5086587069 @default.
- W2921568231 hasBestOaLocation W29215682311 @default.
- W2921568231 hasConcept C115961682 @default.
- W2921568231 hasConcept C124101348 @default.
- W2921568231 hasConcept C127413603 @default.
- W2921568231 hasConcept C153180895 @default.
- W2921568231 hasConcept C154945302 @default.
- W2921568231 hasConcept C162324750 @default.
- W2921568231 hasConcept C177212765 @default.
- W2921568231 hasConcept C177264268 @default.
- W2921568231 hasConcept C187736073 @default.
- W2921568231 hasConcept C199360897 @default.
- W2921568231 hasConcept C21200559 @default.
- W2921568231 hasConcept C24326235 @default.
- W2921568231 hasConcept C2777522853 @default.
- W2921568231 hasConcept C2780451532 @default.
- W2921568231 hasConcept C41008148 @default.
- W2921568231 hasConcept C42781572 @default.
- W2921568231 hasConcept C77088390 @default.
- W2921568231 hasConcept C79403827 @default.
- W2921568231 hasConcept C89600930 @default.
- W2921568231 hasConcept C9417928 @default.
- W2921568231 hasConceptScore W2921568231C115961682 @default.
- W2921568231 hasConceptScore W2921568231C124101348 @default.