Matches in SemOpenAlex for { <https://semopenalex.org/work/W2921576319> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W2921576319 abstract "Various common corneal eye diseases, such as dry eye, Fuchs endothelial dystrophy, Keratoconus and corneal graft rejection, can be diagnosed based on the changes in the thickness of corneal microlayers. Optical Coherence Tomography (OCT) technology made it possible to obtain high resolution corneal images that show the microlayered structures of the cornea. Manual segmentation is subjective and not feasible due to the large volume of obtained images. Existing automatic methods, used for segmenting corneal layer interfaces, are not robust and they segment few corneal microlayer interfaces. Moreover, there is no large annotated database of corneal OCT images, which is an obstacle towards the application of powerful machine learning methods such as deep learning for the segmentation of corneal interfaces. In this paper, we propose a novel segmentation method for corneal OCT images using Graph Search and Radon Transform. To the best of our knowledge, we are the first to develop an automatic segmentation method for the six corneal microlayer interfaces. The proposed method involves a novel image denoising method and an inner interfaces localization method. The proposed method was tested on 15 corneal OCT images. The images were randomly selected and manually segmented by two operators. Experimental results show that our method has a mean segmentation error of 3.87 ± 5.21 pixels (i.e. 5.81 ± 7.82μm) across all interfaces compared to the segmentation of the manual operators. The two manual operators have mean segmentation difference of 4.07 ± 4.71 pixels (i.e. 6.11 ± 7.07μm). The mean running time to segment all the corneal microlayer interfaces is 6.66 ± 0.22 seconds." @default.
- W2921576319 created "2019-03-22" @default.
- W2921576319 creator A5016495683 @default.
- W2921576319 creator A5024013683 @default.
- W2921576319 creator A5073080368 @default.
- W2921576319 date "2019-03-15" @default.
- W2921576319 modified "2023-09-26" @default.
- W2921576319 title "Segmentation of corneal optical coherence tomography images using Graph Search and Radon transform" @default.
- W2921576319 cites W1514586132 @default.
- W2921576319 cites W1968758683 @default.
- W2921576319 cites W1980846287 @default.
- W2921576319 cites W2006707592 @default.
- W2921576319 cites W2017745767 @default.
- W2921576319 cites W2019037473 @default.
- W2921576319 cites W2042058871 @default.
- W2921576319 cites W2082031649 @default.
- W2921576319 cites W2085261163 @default.
- W2921576319 cites W2089441731 @default.
- W2921576319 cites W2115260220 @default.
- W2921576319 cites W2146755476 @default.
- W2921576319 cites W2147170463 @default.
- W2921576319 cites W2164774194 @default.
- W2921576319 cites W2183067223 @default.
- W2921576319 cites W2418802570 @default.
- W2921576319 cites W2592473410 @default.
- W2921576319 cites W2621787656 @default.
- W2921576319 cites W2755093441 @default.
- W2921576319 cites W2804593405 @default.
- W2921576319 doi "https://doi.org/10.1117/12.2513114" @default.
- W2921576319 hasPublicationYear "2019" @default.
- W2921576319 type Work @default.
- W2921576319 sameAs 2921576319 @default.
- W2921576319 citedByCount "0" @default.
- W2921576319 crossrefType "proceedings-article" @default.
- W2921576319 hasAuthorship W2921576319A5016495683 @default.
- W2921576319 hasAuthorship W2921576319A5024013683 @default.
- W2921576319 hasAuthorship W2921576319A5073080368 @default.
- W2921576319 hasConcept C118487528 @default.
- W2921576319 hasConcept C124504099 @default.
- W2921576319 hasConcept C154945302 @default.
- W2921576319 hasConcept C160633673 @default.
- W2921576319 hasConcept C2776882836 @default.
- W2921576319 hasConcept C2778818243 @default.
- W2921576319 hasConcept C2778918178 @default.
- W2921576319 hasConcept C31972630 @default.
- W2921576319 hasConcept C41008148 @default.
- W2921576319 hasConcept C71924100 @default.
- W2921576319 hasConcept C89600930 @default.
- W2921576319 hasConceptScore W2921576319C118487528 @default.
- W2921576319 hasConceptScore W2921576319C124504099 @default.
- W2921576319 hasConceptScore W2921576319C154945302 @default.
- W2921576319 hasConceptScore W2921576319C160633673 @default.
- W2921576319 hasConceptScore W2921576319C2776882836 @default.
- W2921576319 hasConceptScore W2921576319C2778818243 @default.
- W2921576319 hasConceptScore W2921576319C2778918178 @default.
- W2921576319 hasConceptScore W2921576319C31972630 @default.
- W2921576319 hasConceptScore W2921576319C41008148 @default.
- W2921576319 hasConceptScore W2921576319C71924100 @default.
- W2921576319 hasConceptScore W2921576319C89600930 @default.
- W2921576319 hasLocation W29215763191 @default.
- W2921576319 hasOpenAccess W2921576319 @default.
- W2921576319 hasPrimaryLocation W29215763191 @default.
- W2921576319 hasRelatedWork W1994128847 @default.
- W2921576319 hasRelatedWork W2001887654 @default.
- W2921576319 hasRelatedWork W2086763438 @default.
- W2921576319 hasRelatedWork W2345319666 @default.
- W2921576319 hasRelatedWork W2592975584 @default.
- W2921576319 hasRelatedWork W2601810895 @default.
- W2921576319 hasRelatedWork W2794115412 @default.
- W2921576319 hasRelatedWork W2888736561 @default.
- W2921576319 hasRelatedWork W2888905826 @default.
- W2921576319 hasRelatedWork W2911598503 @default.
- W2921576319 hasRelatedWork W2921077053 @default.
- W2921576319 hasRelatedWork W2948720149 @default.
- W2921576319 hasRelatedWork W2974242060 @default.
- W2921576319 hasRelatedWork W3002827739 @default.
- W2921576319 hasRelatedWork W3028069198 @default.
- W2921576319 hasRelatedWork W3048196425 @default.
- W2921576319 hasRelatedWork W3080818959 @default.
- W2921576319 hasRelatedWork W3094304937 @default.
- W2921576319 hasRelatedWork W3118252272 @default.
- W2921576319 hasRelatedWork W3166975202 @default.
- W2921576319 isParatext "false" @default.
- W2921576319 isRetracted "false" @default.
- W2921576319 magId "2921576319" @default.
- W2921576319 workType "article" @default.