Matches in SemOpenAlex for { <https://semopenalex.org/work/W2921583414> ?p ?o ?g. }
Showing items 1 to 89 of
89
with 100 items per page.
- W2921583414 abstract "Hyperspectral imaging (HI) is getting much more attention among researchers in different fields like agriculture, defense, medical, and geographical surveys. In this work, we have proposed a novel automated system for the classification and segmentation of landscapes using hyperspectral images. The proposed semi-supervised based approach has improved the extraction of spatial characteristics of the scene that has employed an extended multi-attribute profile (EMAP) by stacking of several attributes. The unlabeled data points located near the classifier boundaries are selected on the basis of entropy related to the corresponding class labels. In the next segmentation phase, MLR probabilities are computed against the output of classifier. Finally, maximum-a-posteriori segmentation is carried out on the multilevel logistic prior labels. The simulated results have obtained classification accuracy of 95.50% by comparing predicted labels with original ones. The segmentation accuracy, after developing regions on the output of classification, is 98.31%. A performance comparison of the proposed approach with several approaches has also been carried out." @default.
- W2921583414 created "2019-03-22" @default.
- W2921583414 creator A5004775175 @default.
- W2921583414 creator A5026246983 @default.
- W2921583414 creator A5046480954 @default.
- W2921583414 creator A5051643343 @default.
- W2921583414 creator A5081215670 @default.
- W2921583414 date "2019-01-01" @default.
- W2921583414 modified "2023-10-16" @default.
- W2921583414 title "Novel Classification Technique for Hyperspectral Imaging using Multinomial Logistic Regression and Morphological Profiles with Composite Kernels" @default.
- W2921583414 cites W1522547150 @default.
- W2921583414 cites W1529476013 @default.
- W2921583414 cites W1986534176 @default.
- W2921583414 cites W1998030734 @default.
- W2921583414 cites W2001298023 @default.
- W2921583414 cites W2010797000 @default.
- W2921583414 cites W2016860790 @default.
- W2921583414 cites W2028469338 @default.
- W2921583414 cites W2041478093 @default.
- W2921583414 cites W2049633694 @default.
- W2921583414 cites W2063907334 @default.
- W2921583414 cites W2099165888 @default.
- W2921583414 cites W2104269704 @default.
- W2921583414 cites W2113464037 @default.
- W2921583414 cites W2113513024 @default.
- W2921583414 cites W2114819256 @default.
- W2921583414 cites W2131697388 @default.
- W2921583414 cites W2143516773 @default.
- W2921583414 cites W2153409933 @default.
- W2921583414 cites W2587790406 @default.
- W2921583414 cites W2607378407 @default.
- W2921583414 cites W3100405753 @default.
- W2921583414 doi "https://doi.org/10.1109/ibcast.2019.8667162" @default.
- W2921583414 hasPublicationYear "2019" @default.
- W2921583414 type Work @default.
- W2921583414 sameAs 2921583414 @default.
- W2921583414 citedByCount "1" @default.
- W2921583414 countsByYear W29215834142021 @default.
- W2921583414 crossrefType "proceedings-article" @default.
- W2921583414 hasAuthorship W2921583414A5004775175 @default.
- W2921583414 hasAuthorship W2921583414A5026246983 @default.
- W2921583414 hasAuthorship W2921583414A5046480954 @default.
- W2921583414 hasAuthorship W2921583414A5051643343 @default.
- W2921583414 hasAuthorship W2921583414A5081215670 @default.
- W2921583414 hasConcept C106301342 @default.
- W2921583414 hasConcept C115961682 @default.
- W2921583414 hasConcept C117568660 @default.
- W2921583414 hasConcept C119857082 @default.
- W2921583414 hasConcept C121332964 @default.
- W2921583414 hasConcept C124504099 @default.
- W2921583414 hasConcept C153180895 @default.
- W2921583414 hasConcept C154945302 @default.
- W2921583414 hasConcept C159078339 @default.
- W2921583414 hasConcept C41008148 @default.
- W2921583414 hasConcept C62520636 @default.
- W2921583414 hasConcept C75294576 @default.
- W2921583414 hasConcept C89600930 @default.
- W2921583414 hasConcept C95623464 @default.
- W2921583414 hasConceptScore W2921583414C106301342 @default.
- W2921583414 hasConceptScore W2921583414C115961682 @default.
- W2921583414 hasConceptScore W2921583414C117568660 @default.
- W2921583414 hasConceptScore W2921583414C119857082 @default.
- W2921583414 hasConceptScore W2921583414C121332964 @default.
- W2921583414 hasConceptScore W2921583414C124504099 @default.
- W2921583414 hasConceptScore W2921583414C153180895 @default.
- W2921583414 hasConceptScore W2921583414C154945302 @default.
- W2921583414 hasConceptScore W2921583414C159078339 @default.
- W2921583414 hasConceptScore W2921583414C41008148 @default.
- W2921583414 hasConceptScore W2921583414C62520636 @default.
- W2921583414 hasConceptScore W2921583414C75294576 @default.
- W2921583414 hasConceptScore W2921583414C89600930 @default.
- W2921583414 hasConceptScore W2921583414C95623464 @default.
- W2921583414 hasLocation W29215834141 @default.
- W2921583414 hasOpenAccess W2921583414 @default.
- W2921583414 hasPrimaryLocation W29215834141 @default.
- W2921583414 hasRelatedWork W2547873948 @default.
- W2921583414 hasRelatedWork W2561828785 @default.
- W2921583414 hasRelatedWork W2766500168 @default.
- W2921583414 hasRelatedWork W2806752985 @default.
- W2921583414 hasRelatedWork W2907969504 @default.
- W2921583414 hasRelatedWork W2921583414 @default.
- W2921583414 hasRelatedWork W2944354449 @default.
- W2921583414 hasRelatedWork W3194874227 @default.
- W2921583414 hasRelatedWork W3202305627 @default.
- W2921583414 hasRelatedWork W4214547365 @default.
- W2921583414 isParatext "false" @default.
- W2921583414 isRetracted "false" @default.
- W2921583414 magId "2921583414" @default.
- W2921583414 workType "article" @default.