Matches in SemOpenAlex for { <https://semopenalex.org/work/W2921701761> ?p ?o ?g. }
Showing items 1 to 71 of
71
with 100 items per page.
- W2921701761 abstract "Public commuting in the Philippines, particularly in the Metro Manila setting, continuously rises as a crucial problem due to also constantly voluminously increasing traffic congestion. Hence, this study proposes an intelligent route recommendation and road traffic information system that uses LTFRB data on 1) fare matrix computation (LRT 1, LRT 2, MRT 3, Bus, and Jeep) through utilizing Sakay.ph GTFS data, as well as 2) taxi pricing computation, and MMDA data (from their official Twitter account) on real-time traffic situation. Such data are used 1) to process the top three route recommendation choices, 2) to create attribute-based bag of words, extract appropriate dataset features, and classify the traffic congestion mode (Light, Light to Moderate, Moderate, Moderate to Heavy, and Heavy) in the involved road/s using Latent Dirichlet Allocation (LDA), and 3) to rebuild the system model automatically in a certain time interval. In this study, 1) the traffic-related tweets from the official Twitter account of MMDA are fetched using Twitter Streaming API and filtered using Named Entity Recognition; 2) the filtered data are preprocessed by applying tokenization, frequency counting, and removal of unnecessary symbols; 3) the features from the preprocessed data are then extracted using Latent Dirichlet Allocation and are hereby used to identify the significant topic segments (time, day, lane of road, road direction, location and traffic mode); and 4) Linear Regression was used for pattern recognition. The results found are as follows: 1) 84% for the accuracy, 85% for the precision, and 83% for the recall garnered for the applied methodology using k-NN as the chosen classification model; 2) the advantage of supervised data acquisition over unsupervised data acquisition; and 3) traffic mode-based pattern extraction and evaluation. These results show the usability and practicality of the study to public commuting." @default.
- W2921701761 created "2019-03-22" @default.
- W2921701761 creator A5024893665 @default.
- W2921701761 creator A5037824805 @default.
- W2921701761 creator A5062719397 @default.
- W2921701761 creator A5062918202 @default.
- W2921701761 creator A5072448503 @default.
- W2921701761 date "2018-11-01" @default.
- W2921701761 modified "2023-09-26" @default.
- W2921701761 title "MMARRS: An Intelligent Route Recommendation and Road Traffic Information System for Multimodal and Unimodal Public Transportation using Text Analysis" @default.
- W2921701761 cites W1989597542 @default.
- W2921701761 cites W2529280371 @default.
- W2921701761 cites W2529624025 @default.
- W2921701761 cites W2538507305 @default.
- W2921701761 cites W2567049788 @default.
- W2921701761 cites W2594232474 @default.
- W2921701761 cites W2735230884 @default.
- W2921701761 cites W2756049440 @default.
- W2921701761 cites W2763427673 @default.
- W2921701761 cites W2782909353 @default.
- W2921701761 cites W2785818537 @default.
- W2921701761 doi "https://doi.org/10.1109/hnicem.2018.8666343" @default.
- W2921701761 hasPublicationYear "2018" @default.
- W2921701761 type Work @default.
- W2921701761 sameAs 2921701761 @default.
- W2921701761 citedByCount "2" @default.
- W2921701761 countsByYear W29217017612021 @default.
- W2921701761 countsByYear W29217017612022 @default.
- W2921701761 crossrefType "proceedings-article" @default.
- W2921701761 hasAuthorship W2921701761A5024893665 @default.
- W2921701761 hasAuthorship W2921701761A5037824805 @default.
- W2921701761 hasAuthorship W2921701761A5062719397 @default.
- W2921701761 hasAuthorship W2921701761A5062918202 @default.
- W2921701761 hasAuthorship W2921701761A5072448503 @default.
- W2921701761 hasConcept C124101348 @default.
- W2921701761 hasConcept C127413603 @default.
- W2921701761 hasConcept C154945302 @default.
- W2921701761 hasConcept C171686336 @default.
- W2921701761 hasConcept C22212356 @default.
- W2921701761 hasConcept C2779888511 @default.
- W2921701761 hasConcept C2985695025 @default.
- W2921701761 hasConcept C41008148 @default.
- W2921701761 hasConcept C500882744 @default.
- W2921701761 hasConcept C539828613 @default.
- W2921701761 hasConceptScore W2921701761C124101348 @default.
- W2921701761 hasConceptScore W2921701761C127413603 @default.
- W2921701761 hasConceptScore W2921701761C154945302 @default.
- W2921701761 hasConceptScore W2921701761C171686336 @default.
- W2921701761 hasConceptScore W2921701761C22212356 @default.
- W2921701761 hasConceptScore W2921701761C2779888511 @default.
- W2921701761 hasConceptScore W2921701761C2985695025 @default.
- W2921701761 hasConceptScore W2921701761C41008148 @default.
- W2921701761 hasConceptScore W2921701761C500882744 @default.
- W2921701761 hasConceptScore W2921701761C539828613 @default.
- W2921701761 hasLocation W29217017611 @default.
- W2921701761 hasOpenAccess W2921701761 @default.
- W2921701761 hasPrimaryLocation W29217017611 @default.
- W2921701761 hasRelatedWork W142374489 @default.
- W2921701761 hasRelatedWork W2383549519 @default.
- W2921701761 hasRelatedWork W2386603188 @default.
- W2921701761 hasRelatedWork W2788416766 @default.
- W2921701761 hasRelatedWork W3148238211 @default.
- W2921701761 hasRelatedWork W572669459 @default.
- W2921701761 hasRelatedWork W578848535 @default.
- W2921701761 hasRelatedWork W579643051 @default.
- W2921701761 hasRelatedWork W582212118 @default.
- W2921701761 hasRelatedWork W624840534 @default.
- W2921701761 isParatext "false" @default.
- W2921701761 isRetracted "false" @default.
- W2921701761 magId "2921701761" @default.
- W2921701761 workType "article" @default.