Matches in SemOpenAlex for { <https://semopenalex.org/work/W2921706503> ?p ?o ?g. }
- W2921706503 endingPage "4188" @default.
- W2921706503 startingPage "4170" @default.
- W2921706503 abstract "Choosing downscaling techniques is crucial in obtaining accurate and reliable climate change predictions, allowing for detailed impact assessments of climate change at regional and local scales. Traditional statistical methods are likely inefficient in downscaling precipitation data from multiple sources or complex data patterns, so using deep learning, a form of nonlinear models, could be a promising solution. In this study, we proposed to use deep learning models, the so‐called long short‐term memory and feedforward neural network methods, for precipitation downscaling for the Vietnamese Mekong Delta. Model performances were assessed for 2036–2065 period, using original climate projections from five climate models under the Coupled Model Intercomparison Project Phase 5, for two Representative Concentration Pathway scenarios (RCP 4.5 and RCP 8.5). The results exhibited that there were good correlations between the modelled and observed values of the testing and validating periods at two long‐term meteorological stations (Can Tho and Chau Doc). We then analysed extreme indices of precipitation, including the annual maximum wet day frequency (Prcp), 95th percentile of precipitation (P95p), maximum 5‐day consecutive rain (R5d), total number of wet days (Ptot), wet day precipitation (SDII) and annual maximum dry day frequency (Pcdd) to evaluate changes in extreme precipitation events. All the five models under the two scenarios predicted that precipitation would increase in the wet season (June–October) and decrease in the dry season (November–May) in the future compared to the present‐day scenario. On average, the means of multiannual wet season precipitation would increase by 20.4 and 25.4% at Can Tho and Chau Doc, respectively, but in the dry season, these values were projected to decrease by 10 and 5.3%. All the climate extreme indices would increase in the period of 2036–2065 in comparison to the baseline. Overall, the developed downscaling models can successfully reproduce historical rainfall patterns and downscale projected precipitation data." @default.
- W2921706503 created "2019-03-22" @default.
- W2921706503 creator A5020412391 @default.
- W2921706503 creator A5023710654 @default.
- W2921706503 creator A5045408352 @default.
- W2921706503 creator A5075629036 @default.
- W2921706503 date "2019-04-01" @default.
- W2921706503 modified "2023-10-18" @default.
- W2921706503 title "Downscaling rainfall using deep learning long short‐term memory and feedforward neural network" @default.
- W2921706503 cites W1131805070 @default.
- W2921706503 cites W1524420836 @default.
- W2921706503 cites W1586335931 @default.
- W2921706503 cites W1600424746 @default.
- W2921706503 cites W1601418866 @default.
- W2921706503 cites W1611704294 @default.
- W2921706503 cites W1895577753 @default.
- W2921706503 cites W1947481528 @default.
- W2921706503 cites W1967480822 @default.
- W2921706503 cites W1969643180 @default.
- W2921706503 cites W1973843039 @default.
- W2921706503 cites W1983837705 @default.
- W2921706503 cites W1984874631 @default.
- W2921706503 cites W1997065014 @default.
- W2921706503 cites W2016295668 @default.
- W2921706503 cites W2023606338 @default.
- W2921706503 cites W2026074853 @default.
- W2921706503 cites W2026156015 @default.
- W2921706503 cites W2033321956 @default.
- W2921706503 cites W2039479776 @default.
- W2921706503 cites W2052485472 @default.
- W2921706503 cites W2058580716 @default.
- W2921706503 cites W2064675550 @default.
- W2921706503 cites W2067087368 @default.
- W2921706503 cites W2080712057 @default.
- W2921706503 cites W2093141926 @default.
- W2921706503 cites W2100649405 @default.
- W2921706503 cites W2114824684 @default.
- W2921706503 cites W2116261113 @default.
- W2921706503 cites W2122974524 @default.
- W2921706503 cites W2131047005 @default.
- W2921706503 cites W2137857192 @default.
- W2921706503 cites W2142121732 @default.
- W2921706503 cites W2142693982 @default.
- W2921706503 cites W2154137718 @default.
- W2921706503 cites W2160853502 @default.
- W2921706503 cites W2165834026 @default.
- W2921706503 cites W2172191993 @default.
- W2921706503 cites W2179874655 @default.
- W2921706503 cites W2342509993 @default.
- W2921706503 cites W2529239031 @default.
- W2921706503 cites W2600413422 @default.
- W2921706503 cites W2781581595 @default.
- W2921706503 cites W2793602411 @default.
- W2921706503 cites W4213327538 @default.
- W2921706503 doi "https://doi.org/10.1002/joc.6066" @default.
- W2921706503 hasPublicationYear "2019" @default.
- W2921706503 type Work @default.
- W2921706503 sameAs 2921706503 @default.
- W2921706503 citedByCount "28" @default.
- W2921706503 countsByYear W29217065032020 @default.
- W2921706503 countsByYear W29217065032021 @default.
- W2921706503 countsByYear W29217065032022 @default.
- W2921706503 countsByYear W29217065032023 @default.
- W2921706503 crossrefType "journal-article" @default.
- W2921706503 hasAuthorship W2921706503A5020412391 @default.
- W2921706503 hasAuthorship W2921706503A5023710654 @default.
- W2921706503 hasAuthorship W2921706503A5045408352 @default.
- W2921706503 hasAuthorship W2921706503A5075629036 @default.
- W2921706503 hasConcept C107054158 @default.
- W2921706503 hasConcept C111368507 @default.
- W2921706503 hasConcept C127313418 @default.
- W2921706503 hasConcept C132651083 @default.
- W2921706503 hasConcept C153294291 @default.
- W2921706503 hasConcept C168754636 @default.
- W2921706503 hasConcept C205649164 @default.
- W2921706503 hasConcept C25022447 @default.
- W2921706503 hasConcept C39432304 @default.
- W2921706503 hasConcept C41156917 @default.
- W2921706503 hasConcept C49204034 @default.
- W2921706503 hasConceptScore W2921706503C107054158 @default.
- W2921706503 hasConceptScore W2921706503C111368507 @default.
- W2921706503 hasConceptScore W2921706503C127313418 @default.
- W2921706503 hasConceptScore W2921706503C132651083 @default.
- W2921706503 hasConceptScore W2921706503C153294291 @default.
- W2921706503 hasConceptScore W2921706503C168754636 @default.
- W2921706503 hasConceptScore W2921706503C205649164 @default.
- W2921706503 hasConceptScore W2921706503C25022447 @default.
- W2921706503 hasConceptScore W2921706503C39432304 @default.
- W2921706503 hasConceptScore W2921706503C41156917 @default.
- W2921706503 hasConceptScore W2921706503C49204034 @default.
- W2921706503 hasIssue "10" @default.
- W2921706503 hasLocation W29217065031 @default.
- W2921706503 hasOpenAccess W2921706503 @default.
- W2921706503 hasPrimaryLocation W29217065031 @default.
- W2921706503 hasRelatedWork W1989806964 @default.
- W2921706503 hasRelatedWork W2114725858 @default.
- W2921706503 hasRelatedWork W2161549781 @default.
- W2921706503 hasRelatedWork W3113703861 @default.