Matches in SemOpenAlex for { <https://semopenalex.org/work/W2921784727> ?p ?o ?g. }
Showing items 1 to 71 of
71
with 100 items per page.
- W2921784727 abstract "Segmentation of the orbital bone is necessary for orbital wall reconstruction in cranio-maxillofacial surgery to support the eyeball position and restore the volume and shape of the orbit. However, orbital bone segmentation has a challenging issue that the orbital bone is composed of high-intensity cortical bones and low-intensity trabecular and thin bones. Especially, the thin bones of the orbital medial wall and the orbital floor have similar intensity values that are indistinguishable from surrounding soft tissues due to the partial volume effect that occurs when CT images are generated. Thus, we propose an orbital bone segmentation method using multi-graylevel FCNs that segment cortical bone, trabecular bone and thin bones with different intensities in head-and-neck CT images. To adjust the image properties of each dataset, pixel spacing normalization and the intensity normalization is performed. To overcome the under-segmentation of the thin bones of the orbital medial wall, a single orbital bone mask is divided into cortical and thin bone masks. Multi-graylevel FCNs are separately trained on the cortical and thin bone masks based on 2D U-Net, and each cortical and thin bone segmentation result is integrated to obtain the whole orbital bone segmentation result. As a result, it showed that multi-graylevel FCNs improves segmentation accuracy of the thin bones of the medial wall compared to a single gray-level FCNs and thresholding." @default.
- W2921784727 created "2019-03-22" @default.
- W2921784727 creator A5035033921 @default.
- W2921784727 creator A5061752050 @default.
- W2921784727 creator A5062666143 @default.
- W2921784727 creator A5074623189 @default.
- W2921784727 date "2019-03-15" @default.
- W2921784727 modified "2023-09-26" @default.
- W2921784727 title "Orbital bone segmentation in head and neck CT images using multi-gray level fully convolutional networks" @default.
- W2921784727 cites W1577855134 @default.
- W2921784727 cites W1901129140 @default.
- W2921784727 cites W2147115198 @default.
- W2921784727 cites W2890998679 @default.
- W2921784727 cites W4239205454 @default.
- W2921784727 cites W4242477083 @default.
- W2921784727 doi "https://doi.org/10.1117/12.2512936" @default.
- W2921784727 hasPublicationYear "2019" @default.
- W2921784727 type Work @default.
- W2921784727 sameAs 2921784727 @default.
- W2921784727 citedByCount "1" @default.
- W2921784727 countsByYear W29217847272023 @default.
- W2921784727 crossrefType "proceedings-article" @default.
- W2921784727 hasAuthorship W2921784727A5035033921 @default.
- W2921784727 hasAuthorship W2921784727A5061752050 @default.
- W2921784727 hasAuthorship W2921784727A5062666143 @default.
- W2921784727 hasAuthorship W2921784727A5074623189 @default.
- W2921784727 hasConcept C105702510 @default.
- W2921784727 hasConcept C115961682 @default.
- W2921784727 hasConcept C124504099 @default.
- W2921784727 hasConcept C127413603 @default.
- W2921784727 hasConcept C136229726 @default.
- W2921784727 hasConcept C146978453 @default.
- W2921784727 hasConcept C154945302 @default.
- W2921784727 hasConcept C191178318 @default.
- W2921784727 hasConcept C192562407 @default.
- W2921784727 hasConcept C196644772 @default.
- W2921784727 hasConcept C2781451080 @default.
- W2921784727 hasConcept C41008148 @default.
- W2921784727 hasConcept C71924100 @default.
- W2921784727 hasConcept C89600930 @default.
- W2921784727 hasConceptScore W2921784727C105702510 @default.
- W2921784727 hasConceptScore W2921784727C115961682 @default.
- W2921784727 hasConceptScore W2921784727C124504099 @default.
- W2921784727 hasConceptScore W2921784727C127413603 @default.
- W2921784727 hasConceptScore W2921784727C136229726 @default.
- W2921784727 hasConceptScore W2921784727C146978453 @default.
- W2921784727 hasConceptScore W2921784727C154945302 @default.
- W2921784727 hasConceptScore W2921784727C191178318 @default.
- W2921784727 hasConceptScore W2921784727C192562407 @default.
- W2921784727 hasConceptScore W2921784727C196644772 @default.
- W2921784727 hasConceptScore W2921784727C2781451080 @default.
- W2921784727 hasConceptScore W2921784727C41008148 @default.
- W2921784727 hasConceptScore W2921784727C71924100 @default.
- W2921784727 hasConceptScore W2921784727C89600930 @default.
- W2921784727 hasLocation W29217847271 @default.
- W2921784727 hasOpenAccess W2921784727 @default.
- W2921784727 hasPrimaryLocation W29217847271 @default.
- W2921784727 hasRelatedWork W2018206842 @default.
- W2921784727 hasRelatedWork W2047939071 @default.
- W2921784727 hasRelatedWork W2181351615 @default.
- W2921784727 hasRelatedWork W2295519047 @default.
- W2921784727 hasRelatedWork W2347731544 @default.
- W2921784727 hasRelatedWork W2386894152 @default.
- W2921784727 hasRelatedWork W2551390060 @default.
- W2921784727 hasRelatedWork W2769503664 @default.
- W2921784727 hasRelatedWork W2959862648 @default.
- W2921784727 hasRelatedWork W4212766161 @default.
- W2921784727 isParatext "false" @default.
- W2921784727 isRetracted "false" @default.
- W2921784727 magId "2921784727" @default.
- W2921784727 workType "article" @default.