Matches in SemOpenAlex for { <https://semopenalex.org/work/W2921906977> ?p ?o ?g. }
- W2921906977 endingPage "1562" @default.
- W2921906977 startingPage "1562" @default.
- W2921906977 abstract "The fault diagnosis of power transformers is of great significance to improve the reliability of power systems. This paper proposes a novel fault diagnosis method called the expertise-guided machine learning (EGML) model where a genetic algorithm (GA) and a mind evolutionary algorithm (MEA) are used as optimization algorithms. Thereby, two types of EGML models are generated, that is, the GA-EGML model and the MEA-EGML model. In the EGML model, knowledge function replaces the cost function of traditional artificial intelligence algorithms, which can provide additional information for each individual and bring some corrections to the prediction results. To investigate the application potentials of the proposed models in power transformer fault diagnosis, real dissolved gases data are utilized to evaluate the diagnosis performance of the proposed models. Results indicate that the performance of the EGML model outperforms the traditional back propagation neural network (BPNN) model and all other models participating in the comparison. Both the GA-EGML model and MEA-EGML model can be used to diagnose the faults of a power transformer, and the latter is better. In addition, to further investigate the robustness of the proposed models for different data, four scenarios are simulated. Empirical results show that the accuracies of all models decrease in the other three scenarios compared to the baseline scenario, especially in scenario 2. However, the proposed models decline less than the traditional models in scenario 2 and scenario 4, and obtain satisfactory accuracy in all scenarios." @default.
- W2921906977 created "2019-03-22" @default.
- W2921906977 creator A5020335809 @default.
- W2921906977 creator A5052500150 @default.
- W2921906977 date "2019-03-14" @default.
- W2921906977 modified "2023-09-27" @default.
- W2921906977 title "A Novel Expertise-Guided Machine Learning Model for Internal Fault State Diagnosis of Power Transformers" @default.
- W2921906977 cites W1933997070 @default.
- W2921906977 cites W1979373126 @default.
- W2921906977 cites W1983877450 @default.
- W2921906977 cites W1987801135 @default.
- W2921906977 cites W1993785147 @default.
- W2921906977 cites W1995094777 @default.
- W2921906977 cites W2026410321 @default.
- W2921906977 cites W2028193856 @default.
- W2921906977 cites W2029963932 @default.
- W2921906977 cites W2050367260 @default.
- W2921906977 cites W2061724487 @default.
- W2921906977 cites W2084575229 @default.
- W2921906977 cites W2092460715 @default.
- W2921906977 cites W2093216892 @default.
- W2921906977 cites W2095980522 @default.
- W2921906977 cites W2115354681 @default.
- W2921906977 cites W2265336114 @default.
- W2921906977 cites W2280977705 @default.
- W2921906977 cites W2295580010 @default.
- W2921906977 cites W2329476579 @default.
- W2921906977 cites W2516588314 @default.
- W2921906977 cites W2592707030 @default.
- W2921906977 cites W2606154467 @default.
- W2921906977 cites W2608562934 @default.
- W2921906977 cites W2624543473 @default.
- W2921906977 cites W2760193045 @default.
- W2921906977 cites W2772858445 @default.
- W2921906977 cites W2781700481 @default.
- W2921906977 cites W2788033804 @default.
- W2921906977 cites W2796963976 @default.
- W2921906977 cites W2798157722 @default.
- W2921906977 cites W2798259146 @default.
- W2921906977 cites W2804334293 @default.
- W2921906977 cites W2804601703 @default.
- W2921906977 cites W2886794804 @default.
- W2921906977 cites W2891012702 @default.
- W2921906977 cites W2893747136 @default.
- W2921906977 cites W2904782898 @default.
- W2921906977 cites W2910145865 @default.
- W2921906977 cites W561982180 @default.
- W2921906977 doi "https://doi.org/10.3390/su11061562" @default.
- W2921906977 hasPublicationYear "2019" @default.
- W2921906977 type Work @default.
- W2921906977 sameAs 2921906977 @default.
- W2921906977 citedByCount "2" @default.
- W2921906977 countsByYear W29219069772021 @default.
- W2921906977 crossrefType "journal-article" @default.
- W2921906977 hasAuthorship W2921906977A5020335809 @default.
- W2921906977 hasAuthorship W2921906977A5052500150 @default.
- W2921906977 hasBestOaLocation W29219069771 @default.
- W2921906977 hasConcept C104317684 @default.
- W2921906977 hasConcept C119599485 @default.
- W2921906977 hasConcept C119857082 @default.
- W2921906977 hasConcept C124101348 @default.
- W2921906977 hasConcept C127413603 @default.
- W2921906977 hasConcept C154945302 @default.
- W2921906977 hasConcept C165801399 @default.
- W2921906977 hasConcept C181335627 @default.
- W2921906977 hasConcept C185592680 @default.
- W2921906977 hasConcept C200601418 @default.
- W2921906977 hasConcept C41008148 @default.
- W2921906977 hasConcept C50644808 @default.
- W2921906977 hasConcept C55493867 @default.
- W2921906977 hasConcept C63479239 @default.
- W2921906977 hasConcept C66322947 @default.
- W2921906977 hasConcept C81818771 @default.
- W2921906977 hasConcept C8880873 @default.
- W2921906977 hasConceptScore W2921906977C104317684 @default.
- W2921906977 hasConceptScore W2921906977C119599485 @default.
- W2921906977 hasConceptScore W2921906977C119857082 @default.
- W2921906977 hasConceptScore W2921906977C124101348 @default.
- W2921906977 hasConceptScore W2921906977C127413603 @default.
- W2921906977 hasConceptScore W2921906977C154945302 @default.
- W2921906977 hasConceptScore W2921906977C165801399 @default.
- W2921906977 hasConceptScore W2921906977C181335627 @default.
- W2921906977 hasConceptScore W2921906977C185592680 @default.
- W2921906977 hasConceptScore W2921906977C200601418 @default.
- W2921906977 hasConceptScore W2921906977C41008148 @default.
- W2921906977 hasConceptScore W2921906977C50644808 @default.
- W2921906977 hasConceptScore W2921906977C55493867 @default.
- W2921906977 hasConceptScore W2921906977C63479239 @default.
- W2921906977 hasConceptScore W2921906977C66322947 @default.
- W2921906977 hasConceptScore W2921906977C81818771 @default.
- W2921906977 hasConceptScore W2921906977C8880873 @default.
- W2921906977 hasIssue "6" @default.
- W2921906977 hasLocation W29219069771 @default.
- W2921906977 hasOpenAccess W2921906977 @default.
- W2921906977 hasPrimaryLocation W29219069771 @default.
- W2921906977 hasRelatedWork W191632763 @default.
- W2921906977 hasRelatedWork W2090806460 @default.
- W2921906977 hasRelatedWork W2122372740 @default.