Matches in SemOpenAlex for { <https://semopenalex.org/work/W2921915420> ?p ?o ?g. }
- W2921915420 endingPage "192" @default.
- W2921915420 startingPage "180" @default.
- W2921915420 abstract "Gross primary production (GPP) is a crucial factor in the carbon cycle especially for the absorption of carbon dioxide into the biosphere from the atmosphere. A large discrepancy between a satellite-based GPP product named MOD17A2H GPP and in-situ data measured at eddy covariance flux towers has been identified over East Asia where the biome types and climatic characteristics are heterogeneous with rugged terrain. For that reason, this study focuses on two potential major error sources in MOD17A2H GPP, which are the coarse resolution land cover information and inappropriate meteorological parameters. The finer resolution observation and monitoring global land cover (FROM-GLC) and the MODIS land cover product collection 5.1 (MCD12Q1) were used to describe biome types in detail, by combining spatial distribution from FROM-GLC and the phenological characteristics of land cover from MCD12Q1. Meteorological parameters were optimized using the 55-years Japanese reanalysis meteorological data (JRA-55). The light use efficiency of the MOD17 GPP algorithm was modified using the combined land cover information (FROM-MCD). Although the use of FROM-MCD and JRA-55 did not improve MOD17A2H GPP, the optimization of two meteorological parameters—daily minimum air temperature (TMIN) and vapor pressure deficit (VPD) significantly improved the GPP algorithm for East Asia. The results show that the root mean square errors (RMSEs) between the estimated and in situ GPPs decreased from 21.83 (gC/m2/8days) to 16.11 (gC/m2/8days) through optimizing the two parameters at 9 flux tower sites. The optimized TMIN and VPD thresholds in the MOD17 GPP algorithm were applied to the entire study area (i.e., East Asia) according to the Köppen-Geiger climate classes. The estimated GPP using the proposed approach was compared to GPPs from widely used process-based models (i.e., VISIT, BEAMS, and BESS), which confirmed that the proposed approach with locally optimized meteorological parameters improved on the underestimation of the MOD17 GPP algorithm for East Asia. The uncertainty of the VPDmin parameter was revealed to be larger than that of TMINmax." @default.
- W2921915420 created "2019-03-22" @default.
- W2921915420 creator A5069161853 @default.
- W2921915420 creator A5069853964 @default.
- W2921915420 creator A5085687141 @default.
- W2921915420 date "2019-06-01" @default.
- W2921915420 modified "2023-10-18" @default.
- W2921915420 title "Improvement of satellite-based estimation of gross primary production through optimization of meteorological parameters and high resolution land cover information at regional scale over East Asia" @default.
- W2921915420 cites W1584031569 @default.
- W2921915420 cites W1854539531 @default.
- W2921915420 cites W1966715855 @default.
- W2921915420 cites W1969811808 @default.
- W2921915420 cites W1971076281 @default.
- W2921915420 cites W1980871238 @default.
- W2921915420 cites W1988814255 @default.
- W2921915420 cites W2001510610 @default.
- W2921915420 cites W2003916298 @default.
- W2921915420 cites W2006021258 @default.
- W2921915420 cites W2010439382 @default.
- W2921915420 cites W2012656566 @default.
- W2921915420 cites W2014196086 @default.
- W2921915420 cites W2014265986 @default.
- W2921915420 cites W2015957996 @default.
- W2921915420 cites W2015979448 @default.
- W2921915420 cites W2016775801 @default.
- W2921915420 cites W2020453793 @default.
- W2921915420 cites W2022727148 @default.
- W2921915420 cites W2022731630 @default.
- W2921915420 cites W2023943177 @default.
- W2921915420 cites W2036301407 @default.
- W2921915420 cites W2040322251 @default.
- W2921915420 cites W2042692910 @default.
- W2921915420 cites W2046064162 @default.
- W2921915420 cites W2046994856 @default.
- W2921915420 cites W2047884674 @default.
- W2921915420 cites W2050230452 @default.
- W2921915420 cites W2054230156 @default.
- W2921915420 cites W2058082913 @default.
- W2921915420 cites W2064749427 @default.
- W2921915420 cites W2068451607 @default.
- W2921915420 cites W2072139589 @default.
- W2921915420 cites W2074665476 @default.
- W2921915420 cites W2075405426 @default.
- W2921915420 cites W2077570405 @default.
- W2921915420 cites W2084659566 @default.
- W2921915420 cites W2087641521 @default.
- W2921915420 cites W2089940084 @default.
- W2921915420 cites W2092140572 @default.
- W2921915420 cites W2099907956 @default.
- W2921915420 cites W2102566458 @default.
- W2921915420 cites W2110909165 @default.
- W2921915420 cites W2112971800 @default.
- W2921915420 cites W2118102799 @default.
- W2921915420 cites W2120597179 @default.
- W2921915420 cites W2120924194 @default.
- W2921915420 cites W2127170577 @default.
- W2921915420 cites W2132406085 @default.
- W2921915420 cites W2134116176 @default.
- W2921915420 cites W2136483781 @default.
- W2921915420 cites W2139250825 @default.
- W2921915420 cites W2142375023 @default.
- W2921915420 cites W2150021548 @default.
- W2921915420 cites W2154700052 @default.
- W2921915420 cites W2155152860 @default.
- W2921915420 cites W2156142545 @default.
- W2921915420 cites W2156748700 @default.
- W2921915420 cites W2160252043 @default.
- W2921915420 cites W2161134866 @default.
- W2921915420 cites W2161783224 @default.
- W2921915420 cites W2167891208 @default.
- W2921915420 cites W2168872978 @default.
- W2921915420 cites W2234352756 @default.
- W2921915420 cites W2338049369 @default.
- W2921915420 cites W2398119689 @default.
- W2921915420 cites W2461158761 @default.
- W2921915420 cites W2525892670 @default.
- W2921915420 cites W2734767010 @default.
- W2921915420 cites W2766496462 @default.
- W2921915420 cites W2792093398 @default.
- W2921915420 cites W2804699855 @default.
- W2921915420 cites W3176510132 @default.
- W2921915420 cites W72730618 @default.
- W2921915420 doi "https://doi.org/10.1016/j.agrformet.2019.02.040" @default.
- W2921915420 hasPublicationYear "2019" @default.
- W2921915420 type Work @default.
- W2921915420 sameAs 2921915420 @default.
- W2921915420 citedByCount "5" @default.
- W2921915420 countsByYear W29219154202021 @default.
- W2921915420 countsByYear W29219154202022 @default.
- W2921915420 countsByYear W29219154202023 @default.
- W2921915420 crossrefType "journal-article" @default.
- W2921915420 hasAuthorship W2921915420A5069161853 @default.
- W2921915420 hasAuthorship W2921915420A5069853964 @default.
- W2921915420 hasAuthorship W2921915420A5085687141 @default.
- W2921915420 hasConcept C107218244 @default.
- W2921915420 hasConcept C110872660 @default.
- W2921915420 hasConcept C127313418 @default.
- W2921915420 hasConcept C127413603 @default.