Matches in SemOpenAlex for { <https://semopenalex.org/work/W2921994706> ?p ?o ?g. }
- W2921994706 endingPage "1067" @default.
- W2921994706 startingPage "1059" @default.
- W2921994706 abstract "ConspectusHere we describe an experimental technique, termed plasmon waveguide resonance (PWR) spectroscopy that enables the characterization of molecular interactions occurring at the level of anisotropic thin films as lipid membranes and therein inserted or interacting molecules. PWR allows one to characterize such molecular interactions at different levels: (1) acquire binding curves and calculate dissociation constants; (2) obtain kinetic information; (3) obtain information about associated anisotropy changes and changes in membrane thickness; (4) obtain insight about lateral homogeneity (formation of domains). Points 1, 2, and 4 can be directly obtained from the data. Point 3 requires spectral fitting procedures so that the different optical parameters characterizing thin films as proteolipid membranes, namely refractive index and extinction coefficient for both p- (TM component of light that is parallel to the incident light) and s- (TE component of light that is perpendicular to the incident light) polarizations and thickness, can be determined. When applied to membrane proteins as the G-protein coupled receptor (GPCR) family, both ligand-induced conformational changes of the receptor can be followed as well as interactions with effectors (e.g., G-proteins). Additionally, by either altering the lipid composition in cellular membranes or specifically controlling its composition in the case of lipid model membranes with reconstituted proteins, the role of the lipid environment in receptor activation and signaling can be determined. Additionally, the eventual partition of receptors in different lipid microdomains (e.g., lipid rafts) can be followed. Such information can be obtained ex cellulo with mammalian cell membrane fragments expressing the protein of interest and/or in vitro with lipid model systems where the protein under investigation has been reconstituted. Moreover, PWR can also be applied to directly follow the reconstitution of membrane proteins in lipid model membranes. The measurements are performed directly (no labeling of molecular partners), in real time and with very high sensitivity.Here we will discuss different aspects of GPCR activation and signaling where PWR brought important information in parallel with other approaches. The utility of PWR is not limited to GPCRs but can be applied to any membrane protein. PWR is also an excellent tool to characterize the interaction of membrane active molecules (as cell penetrating, antimicrobial, viral and amyloid peptides) with lipids. A brief section is dedicated to such applications, with particular emphasis on amyloid peptides. To finalize, as PWR is a homemade technology, ongoing instrument developments aiming at breaking current experimental limitations are briefly discussed, namely, the coupling of PWR with electrochemical measurements and the expansion of measurements from the visible to the infrared region." @default.
- W2921994706 created "2019-03-22" @default.
- W2921994706 creator A5014002723 @default.
- W2921994706 creator A5061732933 @default.
- W2921994706 date "2019-03-13" @default.
- W2921994706 modified "2023-10-12" @default.
- W2921994706 title "Study of G-Protein Coupled Receptor Signaling in Membrane Environment by Plasmon Waveguide Resonance" @default.
- W2921994706 cites W160462792 @default.
- W2921994706 cites W1963256408 @default.
- W2921994706 cites W1966995488 @default.
- W2921994706 cites W1969050264 @default.
- W2921994706 cites W1972549320 @default.
- W2921994706 cites W1973918451 @default.
- W2921994706 cites W1975513256 @default.
- W2921994706 cites W1981864200 @default.
- W2921994706 cites W1988611050 @default.
- W2921994706 cites W1989941417 @default.
- W2921994706 cites W1992138681 @default.
- W2921994706 cites W1995272207 @default.
- W2921994706 cites W1996568268 @default.
- W2921994706 cites W2003594549 @default.
- W2921994706 cites W2008824442 @default.
- W2921994706 cites W2009253992 @default.
- W2921994706 cites W2009768558 @default.
- W2921994706 cites W2015602510 @default.
- W2921994706 cites W2018444159 @default.
- W2921994706 cites W2028645925 @default.
- W2921994706 cites W2034401948 @default.
- W2921994706 cites W2035975126 @default.
- W2921994706 cites W2038130455 @default.
- W2921994706 cites W2038680277 @default.
- W2921994706 cites W2049007155 @default.
- W2921994706 cites W2057842229 @default.
- W2921994706 cites W2068578172 @default.
- W2921994706 cites W2084426169 @default.
- W2921994706 cites W2087326100 @default.
- W2921994706 cites W2088643691 @default.
- W2921994706 cites W2115040835 @default.
- W2921994706 cites W2124329888 @default.
- W2921994706 cites W2125872855 @default.
- W2921994706 cites W2126474446 @default.
- W2921994706 cites W2127159287 @default.
- W2921994706 cites W2131284518 @default.
- W2921994706 cites W2140704050 @default.
- W2921994706 cites W2142083551 @default.
- W2921994706 cites W2142138785 @default.
- W2921994706 cites W2143408828 @default.
- W2921994706 cites W2144595979 @default.
- W2921994706 cites W2146439388 @default.
- W2921994706 cites W2156361465 @default.
- W2921994706 cites W2167304393 @default.
- W2921994706 cites W2403862021 @default.
- W2921994706 cites W2484794086 @default.
- W2921994706 cites W2552330744 @default.
- W2921994706 cites W2619413917 @default.
- W2921994706 cites W2753331681 @default.
- W2921994706 cites W2770973792 @default.
- W2921994706 cites W2803407878 @default.
- W2921994706 cites W776355774 @default.
- W2921994706 doi "https://doi.org/10.1021/acs.accounts.9b00007" @default.
- W2921994706 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30865424" @default.
- W2921994706 hasPublicationYear "2019" @default.
- W2921994706 type Work @default.
- W2921994706 sameAs 2921994706 @default.
- W2921994706 citedByCount "12" @default.
- W2921994706 countsByYear W29219947062019 @default.
- W2921994706 countsByYear W29219947062020 @default.
- W2921994706 countsByYear W29219947062021 @default.
- W2921994706 countsByYear W29219947062023 @default.
- W2921994706 crossrefType "journal-article" @default.
- W2921994706 hasAuthorship W2921994706A5014002723 @default.
- W2921994706 hasAuthorship W2921994706A5061732933 @default.
- W2921994706 hasBestOaLocation W29219947062 @default.
- W2921994706 hasConcept C106847996 @default.
- W2921994706 hasConcept C120665830 @default.
- W2921994706 hasConcept C121332964 @default.
- W2921994706 hasConcept C12554922 @default.
- W2921994706 hasConcept C144647389 @default.
- W2921994706 hasConcept C155672457 @default.
- W2921994706 hasConcept C161200384 @default.
- W2921994706 hasConcept C170493617 @default.
- W2921994706 hasConcept C171250308 @default.
- W2921994706 hasConcept C185592680 @default.
- W2921994706 hasConcept C192562407 @default.
- W2921994706 hasConcept C39944091 @default.
- W2921994706 hasConcept C41625074 @default.
- W2921994706 hasConcept C55493867 @default.
- W2921994706 hasConcept C560191 @default.
- W2921994706 hasConcept C79266657 @default.
- W2921994706 hasConcept C85725439 @default.
- W2921994706 hasConcept C86803240 @default.
- W2921994706 hasConceptScore W2921994706C106847996 @default.
- W2921994706 hasConceptScore W2921994706C120665830 @default.
- W2921994706 hasConceptScore W2921994706C121332964 @default.
- W2921994706 hasConceptScore W2921994706C12554922 @default.
- W2921994706 hasConceptScore W2921994706C144647389 @default.
- W2921994706 hasConceptScore W2921994706C155672457 @default.
- W2921994706 hasConceptScore W2921994706C161200384 @default.