Matches in SemOpenAlex for { <https://semopenalex.org/work/W2922049347> ?p ?o ?g. }
- W2922049347 abstract "Abstract A patch-based non-local self-similarity prior underpins many of the current state-of-the-art results in image-recovery problems. The associated methods tend to exploit such priors either heuristically in terms of the correlations between similar patches, or implicitly using hand-crafted models. Both approaches have a limited ability to represent image-specific self-similarity statistics, which limits the accuracy of the results. To address this problem, we propose a novel multi-observation patch model (MOPM) for image recovery. The MOPM enables the recovery of a clean patch from multiple noisy observations by using a linear filtering operation on a specific manifold. More importantly, it can be adaptively learned from the intermediate recovered image with a latent variable-based Bayesian learning approach. Thus, the MOPM obtains better representation of the image-specific internal statistics. In addition, the MOPM is naturally integrated into a half-quadratic splitting framework, in which the MOPM can be constantly refined through iterations and ultimately produce promising results. The experimental results on denoising and compressive sensing demonstrate the effectiveness of the MOPM for image recovery." @default.
- W2922049347 created "2019-03-22" @default.
- W2922049347 creator A5003799076 @default.
- W2922049347 creator A5006294869 @default.
- W2922049347 creator A5028024287 @default.
- W2922049347 creator A5028235866 @default.
- W2922049347 creator A5033588812 @default.
- W2922049347 creator A5042717633 @default.
- W2922049347 date "2019-10-01" @default.
- W2922049347 modified "2023-10-12" @default.
- W2922049347 title "Accurate imagery recovery using a multi-observation patch model" @default.
- W2922049347 cites W1963408805 @default.
- W2922049347 cites W1971066121 @default.
- W2922049347 cites W1978749115 @default.
- W2922049347 cites W1985133440 @default.
- W2922049347 cites W2009548700 @default.
- W2922049347 cites W2014311222 @default.
- W2922049347 cites W2018990310 @default.
- W2922049347 cites W2040349808 @default.
- W2922049347 cites W2048695508 @default.
- W2922049347 cites W2049502219 @default.
- W2922049347 cites W2054366734 @default.
- W2922049347 cites W2056370875 @default.
- W2922049347 cites W2061375390 @default.
- W2922049347 cites W2062811295 @default.
- W2922049347 cites W2065513175 @default.
- W2922049347 cites W2075674485 @default.
- W2922049347 cites W2077646121 @default.
- W2922049347 cites W2077888727 @default.
- W2922049347 cites W2097073572 @default.
- W2922049347 cites W2097474301 @default.
- W2922049347 cites W2116498084 @default.
- W2922049347 cites W2121058967 @default.
- W2922049347 cites W2121927366 @default.
- W2922049347 cites W2131628350 @default.
- W2922049347 cites W2143701678 @default.
- W2922049347 cites W2155175457 @default.
- W2922049347 cites W2160547390 @default.
- W2922049347 cites W2172275395 @default.
- W2922049347 cites W2203654268 @default.
- W2922049347 cites W2207282238 @default.
- W2922049347 cites W2244252827 @default.
- W2922049347 cites W2321627895 @default.
- W2922049347 cites W2508114009 @default.
- W2922049347 cites W2508457857 @default.
- W2922049347 cites W2509348655 @default.
- W2922049347 cites W2518815253 @default.
- W2922049347 cites W2528571435 @default.
- W2922049347 cites W2536599074 @default.
- W2922049347 cites W2594569625 @default.
- W2922049347 cites W2605257858 @default.
- W2922049347 cites W2769849425 @default.
- W2922049347 cites W2773068069 @default.
- W2922049347 cites W2793515883 @default.
- W2922049347 cites W2889025125 @default.
- W2922049347 cites W2889107641 @default.
- W2922049347 cites W2963686971 @default.
- W2922049347 cites W3104725225 @default.
- W2922049347 cites W3124546987 @default.
- W2922049347 cites W62203920 @default.
- W2922049347 doi "https://doi.org/10.1016/j.ins.2019.03.033" @default.
- W2922049347 hasPublicationYear "2019" @default.
- W2922049347 type Work @default.
- W2922049347 sameAs 2922049347 @default.
- W2922049347 citedByCount "0" @default.
- W2922049347 crossrefType "journal-article" @default.
- W2922049347 hasAuthorship W2922049347A5003799076 @default.
- W2922049347 hasAuthorship W2922049347A5006294869 @default.
- W2922049347 hasAuthorship W2922049347A5028024287 @default.
- W2922049347 hasAuthorship W2922049347A5028235866 @default.
- W2922049347 hasAuthorship W2922049347A5033588812 @default.
- W2922049347 hasAuthorship W2922049347A5042717633 @default.
- W2922049347 hasConcept C103278499 @default.
- W2922049347 hasConcept C107673813 @default.
- W2922049347 hasConcept C115961682 @default.
- W2922049347 hasConcept C124066611 @default.
- W2922049347 hasConcept C153180895 @default.
- W2922049347 hasConcept C154945302 @default.
- W2922049347 hasConcept C17744445 @default.
- W2922049347 hasConcept C177769412 @default.
- W2922049347 hasConcept C199539241 @default.
- W2922049347 hasConcept C2776359362 @default.
- W2922049347 hasConcept C33923547 @default.
- W2922049347 hasConcept C41008148 @default.
- W2922049347 hasConcept C51167844 @default.
- W2922049347 hasConcept C94625758 @default.
- W2922049347 hasConceptScore W2922049347C103278499 @default.
- W2922049347 hasConceptScore W2922049347C107673813 @default.
- W2922049347 hasConceptScore W2922049347C115961682 @default.
- W2922049347 hasConceptScore W2922049347C124066611 @default.
- W2922049347 hasConceptScore W2922049347C153180895 @default.
- W2922049347 hasConceptScore W2922049347C154945302 @default.
- W2922049347 hasConceptScore W2922049347C17744445 @default.
- W2922049347 hasConceptScore W2922049347C177769412 @default.
- W2922049347 hasConceptScore W2922049347C199539241 @default.
- W2922049347 hasConceptScore W2922049347C2776359362 @default.
- W2922049347 hasConceptScore W2922049347C33923547 @default.
- W2922049347 hasConceptScore W2922049347C41008148 @default.
- W2922049347 hasConceptScore W2922049347C51167844 @default.
- W2922049347 hasConceptScore W2922049347C94625758 @default.