Matches in SemOpenAlex for { <https://semopenalex.org/work/W2922072227> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W2922072227 endingPage "16" @default.
- W2922072227 startingPage "1" @default.
- W2922072227 abstract "Online legal consultation plays an increasingly important role in the modern rule-of-law society. This study aims to understand the intention of legal consultation of users with different language expressions and legal knowledge background. A critical issue is a method through which users’ legal consultation data are classified and the feature of each category is extracted. Traditional classification methods rely considerably on lexical and syntactic features and frequently require strict sentence formatting, which eliminates substantial energy and may not be universally applicable. We aim to extract the patterns of users’ consultation on different categories, which minimally depend on lexical, syntax, and sentence formatting. However, research in this area has rarely been conducted in previous legal advisory service studies. In this study, a classification approach for multiclass users’ intention based on pattern-oriented tensor decomposition and Bi-LSTM is proposed, and each user’s legal consulting statement is expressed as a tensor. Moreover, we propose a pattern-oriented tensor decomposition method that can obtain a core tensor that approximates the patterns of users’ consultation. These patterns can improve the accuracy of classifying users’ intention of legal consultation. We use Bi-LSTM to automatically learn and optimize these patterns. Evidently, Bi-LSTM with a pattern-oriented tensor decomposition layer performs better than a recurrent neural network only. Results show that our method is more accurate than the previous work, and the factor matrix and core tensor calculated by the pattern-oriented tensor decomposition are interpretable." @default.
- W2922072227 created "2019-03-22" @default.
- W2922072227 creator A5005090631 @default.
- W2922072227 creator A5020570191 @default.
- W2922072227 creator A5062416906 @default.
- W2922072227 creator A5084500470 @default.
- W2922072227 date "2019-03-07" @default.
- W2922072227 modified "2023-10-10" @default.
- W2922072227 title "Learning Users’ Intention of Legal Consultation through Pattern-Oriented Tensor Decomposition with Bi-LSTM" @default.
- W2922072227 cites W1426199569 @default.
- W2922072227 cites W1535532393 @default.
- W2922072227 cites W1960685374 @default.
- W2922072227 cites W1983467829 @default.
- W2922072227 cites W1993482030 @default.
- W2922072227 cites W2024165284 @default.
- W2922072227 cites W2077071943 @default.
- W2922072227 cites W2080750910 @default.
- W2922072227 cites W2097089247 @default.
- W2922072227 cites W2121713784 @default.
- W2922072227 cites W2151162785 @default.
- W2922072227 cites W2162243185 @default.
- W2922072227 cites W2195659499 @default.
- W2922072227 cites W2199796497 @default.
- W2922072227 cites W2468553379 @default.
- W2922072227 cites W2547812180 @default.
- W2922072227 cites W2556605533 @default.
- W2922072227 doi "https://doi.org/10.1155/2019/2589784" @default.
- W2922072227 hasPublicationYear "2019" @default.
- W2922072227 type Work @default.
- W2922072227 sameAs 2922072227 @default.
- W2922072227 citedByCount "2" @default.
- W2922072227 countsByYear W29220722272022 @default.
- W2922072227 countsByYear W29220722272023 @default.
- W2922072227 crossrefType "journal-article" @default.
- W2922072227 hasAuthorship W2922072227A5005090631 @default.
- W2922072227 hasAuthorship W2922072227A5020570191 @default.
- W2922072227 hasAuthorship W2922072227A5062416906 @default.
- W2922072227 hasAuthorship W2922072227A5084500470 @default.
- W2922072227 hasBestOaLocation W29220722271 @default.
- W2922072227 hasConcept C111919701 @default.
- W2922072227 hasConcept C154945302 @default.
- W2922072227 hasConcept C155281189 @default.
- W2922072227 hasConcept C202444582 @default.
- W2922072227 hasConcept C204321447 @default.
- W2922072227 hasConcept C23123220 @default.
- W2922072227 hasConcept C2777530160 @default.
- W2922072227 hasConcept C2986737658 @default.
- W2922072227 hasConcept C33923547 @default.
- W2922072227 hasConcept C41008148 @default.
- W2922072227 hasConcept C60048249 @default.
- W2922072227 hasConcept C88006597 @default.
- W2922072227 hasConceptScore W2922072227C111919701 @default.
- W2922072227 hasConceptScore W2922072227C154945302 @default.
- W2922072227 hasConceptScore W2922072227C155281189 @default.
- W2922072227 hasConceptScore W2922072227C202444582 @default.
- W2922072227 hasConceptScore W2922072227C204321447 @default.
- W2922072227 hasConceptScore W2922072227C23123220 @default.
- W2922072227 hasConceptScore W2922072227C2777530160 @default.
- W2922072227 hasConceptScore W2922072227C2986737658 @default.
- W2922072227 hasConceptScore W2922072227C33923547 @default.
- W2922072227 hasConceptScore W2922072227C41008148 @default.
- W2922072227 hasConceptScore W2922072227C60048249 @default.
- W2922072227 hasConceptScore W2922072227C88006597 @default.
- W2922072227 hasFunder F4320335777 @default.
- W2922072227 hasLocation W29220722271 @default.
- W2922072227 hasLocation W29220722272 @default.
- W2922072227 hasOpenAccess W2922072227 @default.
- W2922072227 hasPrimaryLocation W29220722271 @default.
- W2922072227 hasRelatedWork W159132833 @default.
- W2922072227 hasRelatedWork W2035950535 @default.
- W2922072227 hasRelatedWork W2086064646 @default.
- W2922072227 hasRelatedWork W2119135658 @default.
- W2922072227 hasRelatedWork W2351555819 @default.
- W2922072227 hasRelatedWork W2357241418 @default.
- W2922072227 hasRelatedWork W2789919619 @default.
- W2922072227 hasRelatedWork W4234402940 @default.
- W2922072227 hasRelatedWork W4283585122 @default.
- W2922072227 hasRelatedWork W4318617392 @default.
- W2922072227 hasVolume "2019" @default.
- W2922072227 isParatext "false" @default.
- W2922072227 isRetracted "false" @default.
- W2922072227 magId "2922072227" @default.
- W2922072227 workType "article" @default.