Matches in SemOpenAlex for { <https://semopenalex.org/work/W2922082445> ?p ?o ?g. }
- W2922082445 endingPage "1343" @default.
- W2922082445 startingPage "1332" @default.
- W2922082445 abstract "• A systematic review on adverse drug reactions (ADRs). • The application of machine learning in pharmacovigilance. • A framework to predict ADRs after the post-marketing of drugs. • Identify unknown compound combinations. • Adequately capture more information on drug substructures. Adverse drug reactions are an unresolved issue that can result in mortality, morbidity and substantial healthcare costs. Many conventional machine learning methods have been used for predicting post-marketing drug side-effects. However, owing to the complex chemical structures of certain drugs and the nonlinear and imbalanced nature of biological data, some side-effects might not be detected. Motivated by the drug discovery research studies that have shown that deep learning outperformed machine learning methods over prediction tasks, we proposed: (i) to exploit the unsupervised deep learning approaches to predict ADRs; (ii) to use a two-stage framework to predict personalized ADRs and repurpose the drugs. This work demonstrates that the proposed framework shows promise in providing more-accurate prediction of side-effects and drug repurposing. Machine learning, especially deep learning, has the predictive power to predict adverse drug reactions, repurpose drugs and perform precision medicine. We provide a background of machine learning and propose a potential high-performance deep learning framework for its successful applications in these practices." @default.
- W2922082445 created "2019-03-22" @default.
- W2922082445 creator A5036915271 @default.
- W2922082445 creator A5063038462 @default.
- W2922082445 date "2019-07-01" @default.
- W2922082445 modified "2023-10-18" @default.
- W2922082445 title "Machine learning on adverse drug reactions for pharmacovigilance" @default.
- W2922082445 cites W1161601223 @default.
- W2922082445 cites W1924702765 @default.
- W2922082445 cites W1987239705 @default.
- W2922082445 cites W1987581851 @default.
- W2922082445 cites W1990654536 @default.
- W2922082445 cites W1992746042 @default.
- W2922082445 cites W1998589615 @default.
- W2922082445 cites W2007628554 @default.
- W2922082445 cites W2018476856 @default.
- W2922082445 cites W2030035529 @default.
- W2922082445 cites W2031299502 @default.
- W2922082445 cites W2039656193 @default.
- W2922082445 cites W2040135138 @default.
- W2922082445 cites W2041666739 @default.
- W2922082445 cites W2047708582 @default.
- W2922082445 cites W2049946556 @default.
- W2922082445 cites W2071478164 @default.
- W2922082445 cites W2074946043 @default.
- W2922082445 cites W2076186508 @default.
- W2922082445 cites W2088562998 @default.
- W2922082445 cites W2107516065 @default.
- W2922082445 cites W2117660753 @default.
- W2922082445 cites W2119463649 @default.
- W2922082445 cites W2126671570 @default.
- W2922082445 cites W2135037015 @default.
- W2922082445 cites W2136127280 @default.
- W2922082445 cites W2152454589 @default.
- W2922082445 cites W2187793890 @default.
- W2922082445 cites W2210162923 @default.
- W2922082445 cites W2260648135 @default.
- W2922082445 cites W2282002114 @default.
- W2922082445 cites W2304094619 @default.
- W2922082445 cites W2317015106 @default.
- W2922082445 cites W2345737644 @default.
- W2922082445 cites W2408641126 @default.
- W2922082445 cites W2511023995 @default.
- W2922082445 cites W2547133118 @default.
- W2922082445 cites W2549900009 @default.
- W2922082445 cites W2552433453 @default.
- W2922082445 cites W2561454645 @default.
- W2922082445 cites W2565516711 @default.
- W2922082445 cites W2573296168 @default.
- W2922082445 cites W2599434197 @default.
- W2922082445 cites W2622157970 @default.
- W2922082445 cites W2753588101 @default.
- W2922082445 cites W2919115771 @default.
- W2922082445 cites W807317906 @default.
- W2922082445 doi "https://doi.org/10.1016/j.drudis.2019.03.003" @default.
- W2922082445 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30876845" @default.
- W2922082445 hasPublicationYear "2019" @default.
- W2922082445 type Work @default.
- W2922082445 sameAs 2922082445 @default.
- W2922082445 citedByCount "42" @default.
- W2922082445 countsByYear W29220824452020 @default.
- W2922082445 countsByYear W29220824452021 @default.
- W2922082445 countsByYear W29220824452022 @default.
- W2922082445 countsByYear W29220824452023 @default.
- W2922082445 crossrefType "journal-article" @default.
- W2922082445 hasAuthorship W2922082445A5036915271 @default.
- W2922082445 hasAuthorship W2922082445A5063038462 @default.
- W2922082445 hasConcept C103637391 @default.
- W2922082445 hasConcept C108583219 @default.
- W2922082445 hasConcept C119857082 @default.
- W2922082445 hasConcept C12267149 @default.
- W2922082445 hasConcept C127413603 @default.
- W2922082445 hasConcept C154945302 @default.
- W2922082445 hasConcept C165696696 @default.
- W2922082445 hasConcept C2780035454 @default.
- W2922082445 hasConcept C2993432071 @default.
- W2922082445 hasConcept C38652104 @default.
- W2922082445 hasConcept C41008148 @default.
- W2922082445 hasConcept C519536355 @default.
- W2922082445 hasConcept C548081761 @default.
- W2922082445 hasConcept C57658597 @default.
- W2922082445 hasConcept C60644358 @default.
- W2922082445 hasConcept C71924100 @default.
- W2922082445 hasConcept C74187038 @default.
- W2922082445 hasConcept C86803240 @default.
- W2922082445 hasConcept C98274493 @default.
- W2922082445 hasConceptScore W2922082445C103637391 @default.
- W2922082445 hasConceptScore W2922082445C108583219 @default.
- W2922082445 hasConceptScore W2922082445C119857082 @default.
- W2922082445 hasConceptScore W2922082445C12267149 @default.
- W2922082445 hasConceptScore W2922082445C127413603 @default.
- W2922082445 hasConceptScore W2922082445C154945302 @default.
- W2922082445 hasConceptScore W2922082445C165696696 @default.
- W2922082445 hasConceptScore W2922082445C2780035454 @default.
- W2922082445 hasConceptScore W2922082445C2993432071 @default.
- W2922082445 hasConceptScore W2922082445C38652104 @default.
- W2922082445 hasConceptScore W2922082445C41008148 @default.
- W2922082445 hasConceptScore W2922082445C519536355 @default.