Matches in SemOpenAlex for { <https://semopenalex.org/work/W2922112009> ?p ?o ?g. }
- W2922112009 endingPage "942" @default.
- W2922112009 startingPage "931" @default.
- W2922112009 abstract "Recombinant mammalian cell line development is a critical step in the current manufacturing process for large-scale production of therapeutic proteins. The current process of cell line development using random transgene integration induces high phenotypic heterogeneity among recombinant clones, thus limiting predictive value, process streamlining, and cost-effectiveness in biopharmaceutical drug discovery and development. Recent advances in genome-editing technologies and systems biology approaches offer new insight into cell line development to minimize clonal variation. Targeted engineering strategies, combined with engineering target/integration site discovery based on multiomics data sets and in silico models, have the potential to streamline the process of cell line development with highly predictable gene expression among recombinant clones. Mammalian expression platforms are primary production systems for therapeutic proteins that require complex post-translational modifications. Current processes used for developing recombinant mammalian cell lines generate clonal cell lines with high phenotypic heterogeneity, which has puzzled researchers that use mammalian cell culture systems for a long time. Advances in mammalian genome-editing technologies and systems biotechnology have shed light on clonal variation and enabled rational cell engineering in a targeted manner. We propose a new approach for a next-generation cell line development platform that can minimize clonal variation. Combined with the knowledge-based selection of ideal integration sites and engineering targets, targeted integration-based cell line development will allow tailored control of recombinant gene expression with predicted phenotypes. Mammalian expression platforms are primary production systems for therapeutic proteins that require complex post-translational modifications. Current processes used for developing recombinant mammalian cell lines generate clonal cell lines with high phenotypic heterogeneity, which has puzzled researchers that use mammalian cell culture systems for a long time. Advances in mammalian genome-editing technologies and systems biotechnology have shed light on clonal variation and enabled rational cell engineering in a targeted manner. We propose a new approach for a next-generation cell line development platform that can minimize clonal variation. Combined with the knowledge-based selection of ideal integration sites and engineering targets, targeted integration-based cell line development will allow tailored control of recombinant gene expression with predicted phenotypes. molecular biology technique used to analyze physical chromatin interactions within the nucleus. This technique involves crosslinking of chromatin segments that are in close spatial proximity, followed by fragmentation, ligation, and sequencing. Depending on ligation product detection methods, various 3C-based methods (e.g., 4C and Hi-C) possessing different scope of interaction profiles are available. alterable nature of genomes indicated by structural variation and aneuploidy; these characteristics are typically observed in immortalized mammalian cell lines. computational model encompassing all metabolic reactions that allow for the computation of whole-cell metabolism and prediction of cell growth and gene essentiality. genetic recombination process essential for DNA damage repair. A break in chromosomal DNA can be repaired by the exchange of nucleotide sequences between two similar DNA strands. cellular system for the expression of target molecules (genes). Mammalian cells are the main hosts for the production of various therapeutic proteins. computational model that allows for the analysis of cell phenotypes or biological processes. cryopreserved aliquot of (recombinant clonal) cells that are passaged as little as possible to prevent genetic variation, contamination, or loss of transgene expression. datasets of multiomes including genome, transcriptome, epigenome, proteome, metabolome, and lipidome. clonal cell line derived from host cells in which a transgene expression construct is introduced and stably integrated into the genome. powerful tool for targeted integration of transgenes in which site-specific recombinases exchange one (reporter) gene cassette flanked by a pair of incompatible heterospecific recombinase recognition sites for another (target transgene) cassette flanked by an identical pair of sites. parameter describing cell growth for a specific cell line in culture, defined as the rate of cell growth per unit time. parameter describing the capability of a specific cell line to generate its product in culture, defined as amount of product produced per cell per unit time (picogram per cell per day, PCD). inherently noisy and probabilistic gene expression profiles arising from fluctuations in transcription and translation. structural and quantitative chromosomal rearrangements including deletions, duplications, inversion, insertions, and translocations. clonal cell line derived from parental recombinant clonal cells by additional cloning procedures. megabase-sized genomic regions where chromatin contacts are favored and separated by boundary regions that are enriched in architectural proteins such as insulator binding factor and transposable elements or housekeeping genes." @default.
- W2922112009 created "2019-03-22" @default.
- W2922112009 creator A5030163258 @default.
- W2922112009 creator A5050995735 @default.
- W2922112009 creator A5052068080 @default.
- W2922112009 creator A5074538839 @default.
- W2922112009 date "2019-09-01" @default.
- W2922112009 modified "2023-10-11" @default.
- W2922112009 title "Mitigating Clonal Variation in Recombinant Mammalian Cell Lines" @default.
- W2922112009 cites W1836448445 @default.
- W2922112009 cites W1924593714 @default.
- W2922112009 cites W1938349683 @default.
- W2922112009 cites W1965512074 @default.
- W2922112009 cites W1968389447 @default.
- W2922112009 cites W1974887619 @default.
- W2922112009 cites W1977955083 @default.
- W2922112009 cites W1983440646 @default.
- W2922112009 cites W1990149904 @default.
- W2922112009 cites W1995932419 @default.
- W2922112009 cites W2000560123 @default.
- W2922112009 cites W2002044784 @default.
- W2922112009 cites W2005361347 @default.
- W2922112009 cites W2010653277 @default.
- W2922112009 cites W2020247204 @default.
- W2922112009 cites W2027694180 @default.
- W2922112009 cites W2033032210 @default.
- W2922112009 cites W2048941695 @default.
- W2922112009 cites W2049728326 @default.
- W2922112009 cites W2066099080 @default.
- W2922112009 cites W2069280583 @default.
- W2922112009 cites W2070021921 @default.
- W2922112009 cites W2073231984 @default.
- W2922112009 cites W2080477348 @default.
- W2922112009 cites W2085020901 @default.
- W2922112009 cites W2085754069 @default.
- W2922112009 cites W2090641782 @default.
- W2922112009 cites W2093343938 @default.
- W2922112009 cites W2096168733 @default.
- W2922112009 cites W2099259774 @default.
- W2922112009 cites W2101287056 @default.
- W2922112009 cites W2105405216 @default.
- W2922112009 cites W2117763379 @default.
- W2922112009 cites W2122563582 @default.
- W2922112009 cites W2127173397 @default.
- W2922112009 cites W2139073344 @default.
- W2922112009 cites W2141688036 @default.
- W2922112009 cites W2161576062 @default.
- W2922112009 cites W2164740045 @default.
- W2922112009 cites W2168619204 @default.
- W2922112009 cites W2169389191 @default.
- W2922112009 cites W2171102444 @default.
- W2922112009 cites W2171280873 @default.
- W2922112009 cites W2172134808 @default.
- W2922112009 cites W2211016425 @default.
- W2922112009 cites W2271159206 @default.
- W2922112009 cites W2289965054 @default.
- W2922112009 cites W2292363284 @default.
- W2922112009 cites W2335459725 @default.
- W2922112009 cites W2336065216 @default.
- W2922112009 cites W2340837533 @default.
- W2922112009 cites W2388714865 @default.
- W2922112009 cites W2433272693 @default.
- W2922112009 cites W2574503332 @default.
- W2922112009 cites W2587946751 @default.
- W2922112009 cites W2607237411 @default.
- W2922112009 cites W2620082692 @default.
- W2922112009 cites W2774505065 @default.
- W2922112009 cites W2783701314 @default.
- W2922112009 cites W2799314391 @default.
- W2922112009 cites W2800755544 @default.
- W2922112009 cites W2887092751 @default.
- W2922112009 cites W2899043226 @default.
- W2922112009 cites W2901949049 @default.
- W2922112009 cites W2917928050 @default.
- W2922112009 cites W2917973694 @default.
- W2922112009 doi "https://doi.org/10.1016/j.tibtech.2019.02.007" @default.
- W2922112009 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30898338" @default.
- W2922112009 hasPublicationYear "2019" @default.
- W2922112009 type Work @default.
- W2922112009 sameAs 2922112009 @default.
- W2922112009 citedByCount "40" @default.
- W2922112009 countsByYear W29221120092020 @default.
- W2922112009 countsByYear W29221120092021 @default.
- W2922112009 countsByYear W29221120092022 @default.
- W2922112009 countsByYear W29221120092023 @default.
- W2922112009 crossrefType "journal-article" @default.
- W2922112009 hasAuthorship W2922112009A5030163258 @default.
- W2922112009 hasAuthorship W2922112009A5050995735 @default.
- W2922112009 hasAuthorship W2922112009A5052068080 @default.
- W2922112009 hasAuthorship W2922112009A5074538839 @default.
- W2922112009 hasConcept C104317684 @default.
- W2922112009 hasConcept C141231307 @default.
- W2922112009 hasConcept C144501496 @default.
- W2922112009 hasConcept C145290725 @default.
- W2922112009 hasConcept C152662350 @default.
- W2922112009 hasConcept C191908910 @default.
- W2922112009 hasConcept C2775905019 @default.
- W2922112009 hasConcept C2781047461 @default.