Matches in SemOpenAlex for { <https://semopenalex.org/work/W2922136650> ?p ?o ?g. }
- W2922136650 endingPage "759" @default.
- W2922136650 startingPage "748" @default.
- W2922136650 abstract "Criegee intermediates (CI) from ozonolysis of biogenic volatile organic compounds (BVOC) have been suggested to be important atmospheric oxidants. However, due to their low atmospheric concentrations, possible high reactivity with water vapor, and unconstrained thermal unimolecular decay rates, their impact on atmospheric oxidation of trace species such as SO2 and NO2 remains uncertain. In this study, we investigate the formation of secondary sulfate aerosols (SSA) in nocturnal power plant plumes in the Southeastern US. These plumes have large mixing ratios of SO2 and NOx that make reaction with CI competitive with other pathways, such as thermal unimolecular decay and water vapor reaction. The background into which these plumes are emitted has high levels of BVOC and O3, whose reaction produces a large source of CI. Observed nighttime power plant plume intercepts had measurable sulfate aerosol, ranging from 0.7–1.2% of the total plume sulfur (SO2 + sulfate) on a molar basis. In the absence of photochemical OH oxidation, these observed sulfate levels can be compared to calculated CI + SO2 production. We present a plume dispersion model that simulates the chemical evolution of these nighttime plumes and compare the results to observed sulfate aerosol. Thermal unimolecular decay of CI is the largest uncertainty. In the absence of thermal unimolecular CI decay, CI reactions with SO2 in the dark account for up to 41% of the total observed sulfate aerosol, with the remainder attributable to reaction of SO2 with secondary OH and direct emission. Conversely, with a thermal unimolecular decay rate for all CI of 200 s–1, equivalent to the highest measured rate, CI reactions with SO2 accounted for only 5.7% of the total SSA. A second uncertainty is the rate coefficients for larger, and as yet unmeasured, CI species. The most important CI in the modeled scenario is the C1 compound, CH2OO, which accounts for up to 50% of the CIs produced from isoprene. C4 CIs may contribute up to 40% of the CIs produced and are expected to have substantially slower thermal unimolecular decay rates and water vapor reaction rate coefficients. Therefore, the model results may be a lower limit to the CI contribution to SSA. Calculated nighttime (10 h) total SO2 oxidation was 1.8%, of which 1.1% was due to CI + SO2, and the remainder to secondary OH + SO2. This compares to daytime (14 h) SO2 oxidation rates of 4% due to photochemical OH + SO2 reaction." @default.
- W2922136650 created "2019-03-22" @default.
- W2922136650 creator A5005051998 @default.
- W2922136650 creator A5011118694 @default.
- W2922136650 creator A5019922675 @default.
- W2922136650 creator A5046294107 @default.
- W2922136650 creator A5054533112 @default.
- W2922136650 creator A5057462897 @default.
- W2922136650 creator A5066556450 @default.
- W2922136650 creator A5069772931 @default.
- W2922136650 creator A5071135960 @default.
- W2922136650 creator A5076814496 @default.
- W2922136650 creator A5081055523 @default.
- W2922136650 creator A5084092408 @default.
- W2922136650 creator A5086322948 @default.
- W2922136650 date "2019-03-06" @default.
- W2922136650 modified "2023-10-10" @default.
- W2922136650 title "Role of Criegee Intermediates in Secondary Sulfate Aerosol Formation in Nocturnal Power Plant Plumes in the Southeast US" @default.
- W2922136650 cites W1908505930 @default.
- W2922136650 cites W1971717623 @default.
- W2922136650 cites W1976746179 @default.
- W2922136650 cites W1978779625 @default.
- W2922136650 cites W1990595667 @default.
- W2922136650 cites W1995673006 @default.
- W2922136650 cites W1996440402 @default.
- W2922136650 cites W1998488618 @default.
- W2922136650 cites W2002098568 @default.
- W2922136650 cites W2002570697 @default.
- W2922136650 cites W2007622888 @default.
- W2922136650 cites W2020904648 @default.
- W2922136650 cites W2021804239 @default.
- W2922136650 cites W2027893566 @default.
- W2922136650 cites W2040704969 @default.
- W2922136650 cites W2047457654 @default.
- W2922136650 cites W2067209936 @default.
- W2922136650 cites W2074627137 @default.
- W2922136650 cites W2075208658 @default.
- W2922136650 cites W2097857598 @default.
- W2922136650 cites W2124190993 @default.
- W2922136650 cites W2129472559 @default.
- W2922136650 cites W2130854771 @default.
- W2922136650 cites W2136105501 @default.
- W2922136650 cites W2160178264 @default.
- W2922136650 cites W2170370505 @default.
- W2922136650 cites W2170698707 @default.
- W2922136650 cites W2171894480 @default.
- W2922136650 cites W2236191613 @default.
- W2922136650 cites W2327444407 @default.
- W2922136650 cites W2328077890 @default.
- W2922136650 cites W2410724727 @default.
- W2922136650 cites W2524383013 @default.
- W2922136650 cites W2571428962 @default.
- W2922136650 cites W2610761560 @default.
- W2922136650 cites W2622326634 @default.
- W2922136650 cites W2714243732 @default.
- W2922136650 cites W2734916047 @default.
- W2922136650 cites W2769768100 @default.
- W2922136650 cites W2789146045 @default.
- W2922136650 cites W2789703774 @default.
- W2922136650 cites W2791904727 @default.
- W2922136650 doi "https://doi.org/10.1021/acsearthspacechem.8b00215" @default.
- W2922136650 hasPublicationYear "2019" @default.
- W2922136650 type Work @default.
- W2922136650 sameAs 2922136650 @default.
- W2922136650 citedByCount "15" @default.
- W2922136650 countsByYear W29221366502020 @default.
- W2922136650 countsByYear W29221366502021 @default.
- W2922136650 countsByYear W29221366502022 @default.
- W2922136650 countsByYear W29221366502023 @default.
- W2922136650 crossrefType "journal-article" @default.
- W2922136650 hasAuthorship W2922136650A5005051998 @default.
- W2922136650 hasAuthorship W2922136650A5011118694 @default.
- W2922136650 hasAuthorship W2922136650A5019922675 @default.
- W2922136650 hasAuthorship W2922136650A5046294107 @default.
- W2922136650 hasAuthorship W2922136650A5054533112 @default.
- W2922136650 hasAuthorship W2922136650A5057462897 @default.
- W2922136650 hasAuthorship W2922136650A5066556450 @default.
- W2922136650 hasAuthorship W2922136650A5069772931 @default.
- W2922136650 hasAuthorship W2922136650A5071135960 @default.
- W2922136650 hasAuthorship W2922136650A5076814496 @default.
- W2922136650 hasAuthorship W2922136650A5081055523 @default.
- W2922136650 hasAuthorship W2922136650A5084092408 @default.
- W2922136650 hasAuthorship W2922136650A5086322948 @default.
- W2922136650 hasBestOaLocation W29221366502 @default.
- W2922136650 hasConcept C105923489 @default.
- W2922136650 hasConcept C107872376 @default.
- W2922136650 hasConcept C121332964 @default.
- W2922136650 hasConcept C153294291 @default.
- W2922136650 hasConcept C178790620 @default.
- W2922136650 hasConcept C185592680 @default.
- W2922136650 hasConcept C203032635 @default.
- W2922136650 hasConcept C2775840915 @default.
- W2922136650 hasConcept C2778343803 @default.
- W2922136650 hasConcept C2779173278 @default.
- W2922136650 hasConcept C2779345167 @default.
- W2922136650 hasConcept C2779681926 @default.
- W2922136650 hasConcept C49999975 @default.
- W2922136650 hasConcept C508106653 @default.