Matches in SemOpenAlex for { <https://semopenalex.org/work/W2922164578> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W2922164578 endingPage "085016" @default.
- W2922164578 startingPage "085016" @default.
- W2922164578 abstract "Due to the complexity of advanced radiotherapy techniques, treatment planning process is usually time consuming and plan quality can vary considerably among planners and institutions. It is also impractical to generate all possible treatment plans based on available radiotherapy techniques and select the best option for a specific patient. Automatic dose prediction will be very helpful in these situations, while there were a few studies of three-dimensional (3D) dose prediction for patients who received radiotherapy. The purpose of this work was to develop a novel atlas-based method to predict 3D dose prediction and to evaluate its performance. Previously treated nineteen left-sided post-mastectomy breast cancer patients and sixteen prostate cancer patients were included in this study. One patient was arbitrarily chosen as the reference for each type of cancer and all the remaining patients' computed tomography (CT) images and contours were aligned to it using deformable image registration (DIR). Deformable vector field (DVF) for each patient i (DVFi-ref) was used to deform the original 3D dose matrix of that patient. CT scan of a test patient was also registered with the same reference patient using DIR and both direct DVF (DVFtest-ref) and inverse DVF () were derived. Similarity of atlas patients to the test patient was determined based on the similarity of DVFtest-ref to atlas DVFs (DVFi-ref) and appropriate weighting factors were calculated. Patients' doses in the atlas were deformed again using to transform them from the reference patient's coordinates to the test patient's coordinates and the final 3D dose distribution for the test patient was predicted by summing the weighted individual 3D dose distributions. Performance of our method was evaluated and the results revealed that the proposed method was able to predict the 3D dose distributions accurately. The mean dose difference between clinical and predicted 3D dose distributions were 0.9 ± 1.1 Gy and 1.9 ± 1.2 Gy for breast and prostate plans. The proposed dose prediction method can be used to improve planning quality and facilitate plan comparisons." @default.
- W2922164578 created "2019-03-22" @default.
- W2922164578 creator A5065037360 @default.
- W2922164578 creator A5082489517 @default.
- W2922164578 date "2019-04-12" @default.
- W2922164578 modified "2023-10-16" @default.
- W2922164578 title "An atlas-based method to predict three-dimensional dose distributions for cancer patients who receive radiotherapy" @default.
- W2922164578 cites W1978752707 @default.
- W2922164578 cites W1979641127 @default.
- W2922164578 cites W1982668309 @default.
- W2922164578 cites W2000986084 @default.
- W2922164578 cites W2013240574 @default.
- W2922164578 cites W2017857032 @default.
- W2922164578 cites W2032377318 @default.
- W2922164578 cites W2047896044 @default.
- W2922164578 cites W2071871382 @default.
- W2922164578 cites W2086830224 @default.
- W2922164578 cites W2117402184 @default.
- W2922164578 cites W2131034218 @default.
- W2922164578 cites W2133665775 @default.
- W2922164578 cites W2164718209 @default.
- W2922164578 cites W2196898084 @default.
- W2922164578 cites W2334943959 @default.
- W2922164578 cites W2512719816 @default.
- W2922164578 cites W2517258291 @default.
- W2922164578 cites W2898515460 @default.
- W2922164578 cites W2898757811 @default.
- W2922164578 doi "https://doi.org/10.1088/1361-6560/ab10a0" @default.
- W2922164578 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6476420" @default.
- W2922164578 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30884479" @default.
- W2922164578 hasPublicationYear "2019" @default.
- W2922164578 type Work @default.
- W2922164578 sameAs 2922164578 @default.
- W2922164578 citedByCount "5" @default.
- W2922164578 countsByYear W29221645782020 @default.
- W2922164578 countsByYear W29221645782021 @default.
- W2922164578 countsByYear W29221645782022 @default.
- W2922164578 crossrefType "journal-article" @default.
- W2922164578 hasAuthorship W2922164578A5065037360 @default.
- W2922164578 hasAuthorship W2922164578A5082489517 @default.
- W2922164578 hasBestOaLocation W29221645782 @default.
- W2922164578 hasConcept C105702510 @default.
- W2922164578 hasConcept C121608353 @default.
- W2922164578 hasConcept C126322002 @default.
- W2922164578 hasConcept C126838900 @default.
- W2922164578 hasConcept C183115368 @default.
- W2922164578 hasConcept C19527891 @default.
- W2922164578 hasConcept C2776673561 @default.
- W2922164578 hasConcept C2780192828 @default.
- W2922164578 hasConcept C2989005 @default.
- W2922164578 hasConcept C41008148 @default.
- W2922164578 hasConcept C509974204 @default.
- W2922164578 hasConcept C71924100 @default.
- W2922164578 hasConceptScore W2922164578C105702510 @default.
- W2922164578 hasConceptScore W2922164578C121608353 @default.
- W2922164578 hasConceptScore W2922164578C126322002 @default.
- W2922164578 hasConceptScore W2922164578C126838900 @default.
- W2922164578 hasConceptScore W2922164578C183115368 @default.
- W2922164578 hasConceptScore W2922164578C19527891 @default.
- W2922164578 hasConceptScore W2922164578C2776673561 @default.
- W2922164578 hasConceptScore W2922164578C2780192828 @default.
- W2922164578 hasConceptScore W2922164578C2989005 @default.
- W2922164578 hasConceptScore W2922164578C41008148 @default.
- W2922164578 hasConceptScore W2922164578C509974204 @default.
- W2922164578 hasConceptScore W2922164578C71924100 @default.
- W2922164578 hasFunder F4320332161 @default.
- W2922164578 hasIssue "8" @default.
- W2922164578 hasLocation W29221645781 @default.
- W2922164578 hasLocation W29221645782 @default.
- W2922164578 hasLocation W29221645783 @default.
- W2922164578 hasLocation W29221645784 @default.
- W2922164578 hasLocation W29221645785 @default.
- W2922164578 hasOpenAccess W2922164578 @default.
- W2922164578 hasPrimaryLocation W29221645781 @default.
- W2922164578 hasRelatedWork W2049214470 @default.
- W2922164578 hasRelatedWork W2086631544 @default.
- W2922164578 hasRelatedWork W2125640697 @default.
- W2922164578 hasRelatedWork W2291344531 @default.
- W2922164578 hasRelatedWork W2383175641 @default.
- W2922164578 hasRelatedWork W2384708512 @default.
- W2922164578 hasRelatedWork W2519422835 @default.
- W2922164578 hasRelatedWork W2748952813 @default.
- W2922164578 hasRelatedWork W2899084033 @default.
- W2922164578 hasRelatedWork W3021633275 @default.
- W2922164578 hasVolume "64" @default.
- W2922164578 isParatext "false" @default.
- W2922164578 isRetracted "false" @default.
- W2922164578 magId "2922164578" @default.
- W2922164578 workType "article" @default.