Matches in SemOpenAlex for { <https://semopenalex.org/work/W2922172279> ?p ?o ?g. }
- W2922172279 abstract "Deep neural networks are widely used for nonlinear function approximation with applications ranging from computer vision to control. Although these networks involve the composition of simple arithmetic operations, it can be very challenging to verify whether a particular network satisfies certain input-output properties. This article surveys methods that have emerged recently for soundly verifying such properties. These methods borrow insights from reachability analysis, optimization, and search. We discuss fundamental differences and connections between existing algorithms. In addition, we provide pedagogical implementations of existing methods and compare them on a set of benchmark problems." @default.
- W2922172279 created "2019-03-22" @default.
- W2922172279 creator A5000463496 @default.
- W2922172279 creator A5013912726 @default.
- W2922172279 creator A5026961968 @default.
- W2922172279 creator A5033712392 @default.
- W2922172279 creator A5040156274 @default.
- W2922172279 creator A5068326377 @default.
- W2922172279 date "2019-03-15" @default.
- W2922172279 modified "2023-09-23" @default.
- W2922172279 title "Algorithms for Verifying Deep Neural Networks" @default.
- W2922172279 cites W140233501 @default.
- W2922172279 cites W1481397690 @default.
- W2922172279 cites W1538643901 @default.
- W2922172279 cites W1597009674 @default.
- W2922172279 cites W2106100979 @default.
- W2922172279 cites W2120575449 @default.
- W2922172279 cites W2123442489 @default.
- W2922172279 cites W2145339207 @default.
- W2922172279 cites W2180612164 @default.
- W2922172279 cites W2194775991 @default.
- W2922172279 cites W2543296129 @default.
- W2922172279 cites W2594877703 @default.
- W2922172279 cites W2616028256 @default.
- W2922172279 cites W2721006554 @default.
- W2922172279 cites W2760733685 @default.
- W2922172279 cites W2762853919 @default.
- W2922172279 cites W2777417342 @default.
- W2922172279 cites W2788645721 @default.
- W2922172279 cites W2789017165 @default.
- W2922172279 cites W2794609696 @default.
- W2922172279 cites W2801079363 @default.
- W2922172279 cites W2803850896 @default.
- W2922172279 cites W2804224090 @default.
- W2922172279 cites W2889490035 @default.
- W2922172279 cites W2890472662 @default.
- W2922172279 cites W2890660842 @default.
- W2922172279 cites W2895120768 @default.
- W2922172279 cites W2899156512 @default.
- W2922172279 cites W2900153411 @default.
- W2922172279 cites W2905299363 @default.
- W2922172279 cites W2905431656 @default.
- W2922172279 cites W2909765152 @default.
- W2922172279 cites W2916774113 @default.
- W2922172279 cites W2920498407 @default.
- W2922172279 cites W2950499086 @default.
- W2922172279 cites W2955364893 @default.
- W2922172279 cites W2957311447 @default.
- W2922172279 cites W2962692913 @default.
- W2922172279 cites W2962864294 @default.
- W2922172279 cites W2963054787 @default.
- W2922172279 cites W2963327228 @default.
- W2922172279 cites W2963424284 @default.
- W2922172279 cites W2963440492 @default.
- W2922172279 cites W2963496101 @default.
- W2922172279 cites W2963565751 @default.
- W2922172279 cites W2963626025 @default.
- W2922172279 cites W2963673089 @default.
- W2922172279 cites W2963735478 @default.
- W2922172279 cites W2963784236 @default.
- W2922172279 cites W2970212174 @default.
- W2922172279 cites W2970297683 @default.
- W2922172279 cites W2974147052 @default.
- W2922172279 cites W2991226929 @default.
- W2922172279 cites W2996038245 @default.
- W2922172279 cites W3009821482 @default.
- W2922172279 cites W3015150039 @default.
- W2922172279 cites W3036327582 @default.
- W2922172279 cites W3043655933 @default.
- W2922172279 cites W3046272654 @default.
- W2922172279 cites W3046662910 @default.
- W2922172279 cites W3090972680 @default.
- W2922172279 cites W3098560806 @default.
- W2922172279 cites W3102139284 @default.
- W2922172279 cites W3105558219 @default.
- W2922172279 cites W3161144161 @default.
- W2922172279 cites W3210839039 @default.
- W2922172279 doi "https://doi.org/10.48550/arxiv.1903.06758" @default.
- W2922172279 hasPublicationYear "2019" @default.
- W2922172279 type Work @default.
- W2922172279 sameAs 2922172279 @default.
- W2922172279 citedByCount "16" @default.
- W2922172279 countsByYear W29221722792019 @default.
- W2922172279 countsByYear W29221722792020 @default.
- W2922172279 countsByYear W29221722792021 @default.
- W2922172279 crossrefType "posted-content" @default.
- W2922172279 hasAuthorship W2922172279A5000463496 @default.
- W2922172279 hasAuthorship W2922172279A5013912726 @default.
- W2922172279 hasAuthorship W2922172279A5026961968 @default.
- W2922172279 hasAuthorship W2922172279A5033712392 @default.
- W2922172279 hasAuthorship W2922172279A5040156274 @default.
- W2922172279 hasAuthorship W2922172279A5068326377 @default.
- W2922172279 hasBestOaLocation W29221722791 @default.
- W2922172279 hasConcept C111472728 @default.
- W2922172279 hasConcept C115051666 @default.
- W2922172279 hasConcept C127413603 @default.
- W2922172279 hasConcept C13280743 @default.
- W2922172279 hasConcept C136643341 @default.
- W2922172279 hasConcept C138885662 @default.
- W2922172279 hasConcept C14036430 @default.