Matches in SemOpenAlex for { <https://semopenalex.org/work/W2922173624> ?p ?o ?g. }
- W2922173624 endingPage "93" @default.
- W2922173624 startingPage "88" @default.
- W2922173624 abstract "The new technologies for data analysis, such as decision tree learning, may help to predict the risk of developing diseases. The aim of the present work was to develop a pilot decision tree learning to predict overweight/obesity based on the combination of six single nucleotide polymorphisms (SNP) located in feeding-associated genes. Genotype study was performed in 151 healthy individuals, who were anonymized and randomly selected from the TALAVERA study. The decision tree analysis was performed using the R package rpart. The learning process was stopped when 15 or less observation was found in a node. The participant group consisted of 78 men and 73 women, who 100 individuals showed body mass index (BMI) ≥ 25 kg/m2 and 51 BMI < 25 kg/m2. Chi-square analysis revealed that individuals with BMI ≥ 25 kg/m2 showed higher frequency of the allelic variation Ala67Ala in AgRP rs5030980 with respect to those with BMI <25 kg/m2. However, the variant Thr67Ala in AgRP rs5030980 was the most frequently found in individuals with BMI <25 kg/m2. There were no statistical differences in the other analyzed SNPs. Decision tree learning revealed that carriers of the allelic variants AgRP (rs5030980) Ala67Ala, ADRB2 (rs1042714) Gln27Glu or Glu27Glu, INSIG2 (rs7566605) 73 + 9802 with CC or GG genotypes and PPARG (rs1801282) with the allelic variants of Ala12Ala or Pro12Pro, will most likely develop overweight/obesity (BMI ≥ 25 kg/m2). Moreover, the decision tree learning indicated that age and gender may change the developed three decision learning associated with overweight/obesity development. The present work should be considered as a pilot demonstrative study to reinforce the broad field of application of new data analysis technologies, such as decision tree learning, as useful tools for diseases prediction. This technology may achieve a potential applicability in the design of early strategies to prevent overweight/obesity." @default.
- W2922173624 created "2019-03-22" @default.
- W2922173624 creator A5002160272 @default.
- W2922173624 creator A5002544353 @default.
- W2922173624 creator A5010082156 @default.
- W2922173624 creator A5017908986 @default.
- W2922173624 creator A5021263243 @default.
- W2922173624 creator A5056374936 @default.
- W2922173624 creator A5065777533 @default.
- W2922173624 creator A5067046248 @default.
- W2922173624 creator A5068759640 @default.
- W2922173624 creator A5073628584 @default.
- W2922173624 date "2019-05-01" @default.
- W2922173624 modified "2023-10-18" @default.
- W2922173624 title "Decision tree learning to predict overweight/obesity based on body mass index and gene polymporphisms" @default.
- W2922173624 cites W1584935767 @default.
- W2922173624 cites W1965907667 @default.
- W2922173624 cites W1980519334 @default.
- W2922173624 cites W1981371975 @default.
- W2922173624 cites W1984175762 @default.
- W2922173624 cites W1985109620 @default.
- W2922173624 cites W1992267740 @default.
- W2922173624 cites W1994866395 @default.
- W2922173624 cites W1996344911 @default.
- W2922173624 cites W1998685333 @default.
- W2922173624 cites W1999966058 @default.
- W2922173624 cites W2008717620 @default.
- W2922173624 cites W2015918699 @default.
- W2922173624 cites W2023048247 @default.
- W2922173624 cites W2029269750 @default.
- W2922173624 cites W2029873987 @default.
- W2922173624 cites W2034188839 @default.
- W2922173624 cites W2036176645 @default.
- W2922173624 cites W2038623844 @default.
- W2922173624 cites W2040714345 @default.
- W2922173624 cites W2043371292 @default.
- W2922173624 cites W2045087382 @default.
- W2922173624 cites W2048698638 @default.
- W2922173624 cites W2060349617 @default.
- W2922173624 cites W2071926415 @default.
- W2922173624 cites W2090191278 @default.
- W2922173624 cites W2105470099 @default.
- W2922173624 cites W2123676422 @default.
- W2922173624 cites W2129150286 @default.
- W2922173624 cites W2132788294 @default.
- W2922173624 cites W2138083285 @default.
- W2922173624 cites W2145653639 @default.
- W2922173624 cites W2148231516 @default.
- W2922173624 cites W2148365266 @default.
- W2922173624 cites W2149512324 @default.
- W2922173624 cites W2150687509 @default.
- W2922173624 cites W2151240681 @default.
- W2922173624 cites W2153867200 @default.
- W2922173624 cites W2168602111 @default.
- W2922173624 cites W2202714662 @default.
- W2922173624 cites W2475971528 @default.
- W2922173624 cites W2588228158 @default.
- W2922173624 cites W2605606367 @default.
- W2922173624 cites W2618804336 @default.
- W2922173624 cites W2755116403 @default.
- W2922173624 cites W2782955018 @default.
- W2922173624 cites W4212915432 @default.
- W2922173624 cites W990242916 @default.
- W2922173624 doi "https://doi.org/10.1016/j.gene.2019.03.011" @default.
- W2922173624 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30858138" @default.
- W2922173624 hasPublicationYear "2019" @default.
- W2922173624 type Work @default.
- W2922173624 sameAs 2922173624 @default.
- W2922173624 citedByCount "11" @default.
- W2922173624 countsByYear W29221736242019 @default.
- W2922173624 countsByYear W29221736242020 @default.
- W2922173624 countsByYear W29221736242021 @default.
- W2922173624 countsByYear W29221736242022 @default.
- W2922173624 countsByYear W29221736242023 @default.
- W2922173624 crossrefType "journal-article" @default.
- W2922173624 hasAuthorship W2922173624A5002160272 @default.
- W2922173624 hasAuthorship W2922173624A5002544353 @default.
- W2922173624 hasAuthorship W2922173624A5010082156 @default.
- W2922173624 hasAuthorship W2922173624A5017908986 @default.
- W2922173624 hasAuthorship W2922173624A5021263243 @default.
- W2922173624 hasAuthorship W2922173624A5056374936 @default.
- W2922173624 hasAuthorship W2922173624A5065777533 @default.
- W2922173624 hasAuthorship W2922173624A5067046248 @default.
- W2922173624 hasAuthorship W2922173624A5068759640 @default.
- W2922173624 hasAuthorship W2922173624A5073628584 @default.
- W2922173624 hasBestOaLocation W29221736242 @default.
- W2922173624 hasConcept C104317684 @default.
- W2922173624 hasConcept C119857082 @default.
- W2922173624 hasConcept C126322002 @default.
- W2922173624 hasConcept C134018914 @default.
- W2922173624 hasConcept C135763542 @default.
- W2922173624 hasConcept C144024400 @default.
- W2922173624 hasConcept C149923435 @default.
- W2922173624 hasConcept C153209595 @default.
- W2922173624 hasConcept C2780221984 @default.
- W2922173624 hasConcept C2780586474 @default.
- W2922173624 hasConcept C41008148 @default.
- W2922173624 hasConcept C511355011 @default.