Matches in SemOpenAlex for { <https://semopenalex.org/work/W2922175039> ?p ?o ?g. }
- W2922175039 endingPage "647" @default.
- W2922175039 startingPage "647" @default.
- W2922175039 abstract "Deformation detection determines the quantified change of a scene’s geometric state, which is of great importance for the mitigation of hazards and property loss from earth observation. Terrestrial laser scanning (TLS) provides an efficient and flexible solution to rapidly capture high precision three-dimensional (3D) point clouds of hillside areas. Most existing methods apply multi-temporal TLS surveys to detect deformations depending on a variety of ground control points (GCPs). However, on the one hand, the deployment of various GCPs is time-consuming and labor-intensive, particularly for difficult terrain areas. On the other hand, in most cases, TLS stations do not form a closed loop, such that cumulative errors cannot be corrected effectively by the existing methods. To overcome these drawbacks, this paper proposes a deformation detection method with limited GCPs based on a novel registration algorithm that accurately registers TLS stations to the UAV (Unmanned Aerial Vehicle) dense image points. First, the proposed method extracts patch primitives from smoothed hillside points, and adjacent TLS scans are pairwise registered by comparing the geometric and topological information of or between patches. Second, a new multi-station adjustment algorithm is proposed, which makes full use of locally closed loops to reach the global optimal registration. Finally, digital elevation models (DEMs, a DEM is a numerical representation of the terrain surface, formed by height points to represent the topography), slope and aspect maps, and vertical sections are generated from multi-temporal TLS surveys to detect and analyze the deformations. Comprehensive experiments demonstrate that the proposed deformation detection method obtains good performance for the hillside areas with limited (few) GCPs." @default.
- W2922175039 created "2019-03-22" @default.
- W2922175039 creator A5019944648 @default.
- W2922175039 creator A5035056634 @default.
- W2922175039 creator A5079601344 @default.
- W2922175039 creator A5084834971 @default.
- W2922175039 date "2019-03-16" @default.
- W2922175039 modified "2023-10-15" @default.
- W2922175039 title "An Accurate TLS and UAV Image Point Clouds Registration Method for Deformation Detection of Chaotic Hillside Areas" @default.
- W2922175039 cites W1031493043 @default.
- W2922175039 cites W126541936 @default.
- W2922175039 cites W1708538512 @default.
- W2922175039 cites W1971024845 @default.
- W2922175039 cites W1972485825 @default.
- W2922175039 cites W1973729745 @default.
- W2922175039 cites W1977412936 @default.
- W2922175039 cites W1979701165 @default.
- W2922175039 cites W1983512265 @default.
- W2922175039 cites W1997410407 @default.
- W2922175039 cites W2009950826 @default.
- W2922175039 cites W2034381308 @default.
- W2922175039 cites W2035805324 @default.
- W2922175039 cites W2037686083 @default.
- W2922175039 cites W2043871384 @default.
- W2922175039 cites W2045446319 @default.
- W2922175039 cites W2049981393 @default.
- W2922175039 cites W2053346229 @default.
- W2922175039 cites W2065217067 @default.
- W2922175039 cites W2075683923 @default.
- W2922175039 cites W2092323166 @default.
- W2922175039 cites W2101922488 @default.
- W2922175039 cites W2104673011 @default.
- W2922175039 cites W2116551675 @default.
- W2922175039 cites W2145828616 @default.
- W2922175039 cites W2151833217 @default.
- W2922175039 cites W2171429862 @default.
- W2922175039 cites W2279795821 @default.
- W2922175039 cites W2286389128 @default.
- W2922175039 cites W2307922982 @default.
- W2922175039 cites W2322716129 @default.
- W2922175039 cites W2438192244 @default.
- W2922175039 cites W2528383176 @default.
- W2922175039 cites W2552160290 @default.
- W2922175039 cites W2594294302 @default.
- W2922175039 cites W2616636032 @default.
- W2922175039 cites W265474116 @default.
- W2922175039 cites W2791008380 @default.
- W2922175039 cites W2793187686 @default.
- W2922175039 cites W2807083473 @default.
- W2922175039 cites W3101921002 @default.
- W2922175039 doi "https://doi.org/10.3390/rs11060647" @default.
- W2922175039 hasPublicationYear "2019" @default.
- W2922175039 type Work @default.
- W2922175039 sameAs 2922175039 @default.
- W2922175039 citedByCount "27" @default.
- W2922175039 countsByYear W29221750392019 @default.
- W2922175039 countsByYear W29221750392020 @default.
- W2922175039 countsByYear W29221750392021 @default.
- W2922175039 countsByYear W29221750392022 @default.
- W2922175039 countsByYear W29221750392023 @default.
- W2922175039 crossrefType "journal-article" @default.
- W2922175039 hasAuthorship W2922175039A5019944648 @default.
- W2922175039 hasAuthorship W2922175039A5035056634 @default.
- W2922175039 hasAuthorship W2922175039A5079601344 @default.
- W2922175039 hasAuthorship W2922175039A5084834971 @default.
- W2922175039 hasBestOaLocation W29221750391 @default.
- W2922175039 hasConcept C111368507 @default.
- W2922175039 hasConcept C115961682 @default.
- W2922175039 hasConcept C117455697 @default.
- W2922175039 hasConcept C127313418 @default.
- W2922175039 hasConcept C131979681 @default.
- W2922175039 hasConcept C13280743 @default.
- W2922175039 hasConcept C136428324 @default.
- W2922175039 hasConcept C154945302 @default.
- W2922175039 hasConcept C161840515 @default.
- W2922175039 hasConcept C181843262 @default.
- W2922175039 hasConcept C204366326 @default.
- W2922175039 hasConcept C205649164 @default.
- W2922175039 hasConcept C31972630 @default.
- W2922175039 hasConcept C41008148 @default.
- W2922175039 hasConcept C58640448 @default.
- W2922175039 hasConcept C62649853 @default.
- W2922175039 hasConceptScore W2922175039C111368507 @default.
- W2922175039 hasConceptScore W2922175039C115961682 @default.
- W2922175039 hasConceptScore W2922175039C117455697 @default.
- W2922175039 hasConceptScore W2922175039C127313418 @default.
- W2922175039 hasConceptScore W2922175039C131979681 @default.
- W2922175039 hasConceptScore W2922175039C13280743 @default.
- W2922175039 hasConceptScore W2922175039C136428324 @default.
- W2922175039 hasConceptScore W2922175039C154945302 @default.
- W2922175039 hasConceptScore W2922175039C161840515 @default.
- W2922175039 hasConceptScore W2922175039C181843262 @default.
- W2922175039 hasConceptScore W2922175039C204366326 @default.
- W2922175039 hasConceptScore W2922175039C205649164 @default.
- W2922175039 hasConceptScore W2922175039C31972630 @default.
- W2922175039 hasConceptScore W2922175039C41008148 @default.
- W2922175039 hasConceptScore W2922175039C58640448 @default.
- W2922175039 hasConceptScore W2922175039C62649853 @default.