Matches in SemOpenAlex for { <https://semopenalex.org/work/W2922181508> ?p ?o ?g. }
Showing items 1 to 98 of
98
with 100 items per page.
- W2922181508 endingPage "32433" @default.
- W2922181508 startingPage "32423" @default.
- W2922181508 abstract "Diseases related to issues with blood pressure are becoming a major threat to human health. With the development of telemedicine monitoring applications, a growing number of corresponding devices are being marketed, such as the use of remote monitoring for the purposes of increasing the autonomy of the elderly and thus encouraging a healthier and longer health span. Using machine learning algorithms to measure blood pressure at a continuous rate is a feasible way to provide models and analysis for telemedicine monitoring data and predicting blood pressure. For this paper, we applied the gradient boosting decision tree (GBDT) while predicting blood pressure rates based on the human physiological data collected by the EIMO device. EIMO equipment-specific signal acquisition includes ECG and PPG. In order to avoid over-fitting, the optimal parameters are selected via the cross-validation method. Consequently, our method has displayed a higher accuracy rate and better performance in calculating the mean absolute error evaluation index than methods, such as the traditional least squares method, ridge regression, lasso regression, ElasticNet, SVR, and KNN algorithm. When predicting the blood pressure of a single individual, calculating the systolic pressure displays an accuracy rate of above 70% and above 64% for calculating the diastolic pressure with GBDT, with the prediction time being less than 0.1 s. In conclusion, applying the GBDT is the best method for predicting the blood pressure of multiple individuals: with the inclusion of data such as age, body fat, ratio, and height, algorithm accuracy improves, which in turn indicates that the inclusion of new features aids prediction performance." @default.
- W2922181508 created "2019-03-22" @default.
- W2922181508 creator A5020437456 @default.
- W2922181508 creator A5025989800 @default.
- W2922181508 creator A5036065638 @default.
- W2922181508 creator A5040040696 @default.
- W2922181508 creator A5076282777 @default.
- W2922181508 date "2019-01-01" @default.
- W2922181508 modified "2023-10-18" @default.
- W2922181508 title "Health Data Driven on Continuous Blood Pressure Prediction Based on Gradient Boosting Decision Tree Algorithm" @default.
- W2922181508 cites W1480376833 @default.
- W2922181508 cites W1514485941 @default.
- W2922181508 cites W1981801408 @default.
- W2922181508 cites W1986303789 @default.
- W2922181508 cites W1995689478 @default.
- W2922181508 cites W2021674224 @default.
- W2922181508 cites W2048238471 @default.
- W2922181508 cites W2083872334 @default.
- W2922181508 cites W2085802115 @default.
- W2922181508 cites W2088204643 @default.
- W2922181508 cites W2104169584 @default.
- W2922181508 cites W2111256021 @default.
- W2922181508 cites W2118104235 @default.
- W2922181508 cites W2123162799 @default.
- W2922181508 cites W2123321258 @default.
- W2922181508 cites W2167925220 @default.
- W2922181508 cites W2580438754 @default.
- W2922181508 cites W2604922364 @default.
- W2922181508 cites W2613121856 @default.
- W2922181508 cites W2783498497 @default.
- W2922181508 doi "https://doi.org/10.1109/access.2019.2902217" @default.
- W2922181508 hasPublicationYear "2019" @default.
- W2922181508 type Work @default.
- W2922181508 sameAs 2922181508 @default.
- W2922181508 citedByCount "50" @default.
- W2922181508 countsByYear W29221815082019 @default.
- W2922181508 countsByYear W29221815082020 @default.
- W2922181508 countsByYear W29221815082021 @default.
- W2922181508 countsByYear W29221815082022 @default.
- W2922181508 countsByYear W29221815082023 @default.
- W2922181508 crossrefType "journal-article" @default.
- W2922181508 hasAuthorship W2922181508A5020437456 @default.
- W2922181508 hasAuthorship W2922181508A5025989800 @default.
- W2922181508 hasAuthorship W2922181508A5036065638 @default.
- W2922181508 hasAuthorship W2922181508A5040040696 @default.
- W2922181508 hasAuthorship W2922181508A5076282777 @default.
- W2922181508 hasBestOaLocation W29221815081 @default.
- W2922181508 hasConcept C105795698 @default.
- W2922181508 hasConcept C11413529 @default.
- W2922181508 hasConcept C119857082 @default.
- W2922181508 hasConcept C124101348 @default.
- W2922181508 hasConcept C126322002 @default.
- W2922181508 hasConcept C139945424 @default.
- W2922181508 hasConcept C154945302 @default.
- W2922181508 hasConcept C33923547 @default.
- W2922181508 hasConcept C41008148 @default.
- W2922181508 hasConcept C46686674 @default.
- W2922181508 hasConcept C71924100 @default.
- W2922181508 hasConcept C84393581 @default.
- W2922181508 hasConcept C84525736 @default.
- W2922181508 hasConceptScore W2922181508C105795698 @default.
- W2922181508 hasConceptScore W2922181508C11413529 @default.
- W2922181508 hasConceptScore W2922181508C119857082 @default.
- W2922181508 hasConceptScore W2922181508C124101348 @default.
- W2922181508 hasConceptScore W2922181508C126322002 @default.
- W2922181508 hasConceptScore W2922181508C139945424 @default.
- W2922181508 hasConceptScore W2922181508C154945302 @default.
- W2922181508 hasConceptScore W2922181508C33923547 @default.
- W2922181508 hasConceptScore W2922181508C41008148 @default.
- W2922181508 hasConceptScore W2922181508C46686674 @default.
- W2922181508 hasConceptScore W2922181508C71924100 @default.
- W2922181508 hasConceptScore W2922181508C84393581 @default.
- W2922181508 hasConceptScore W2922181508C84525736 @default.
- W2922181508 hasFunder F4320321001 @default.
- W2922181508 hasFunder F4320322163 @default.
- W2922181508 hasFunder F4320324869 @default.
- W2922181508 hasLocation W29221815081 @default.
- W2922181508 hasLocation W29221815082 @default.
- W2922181508 hasLocation W29221815083 @default.
- W2922181508 hasOpenAccess W2922181508 @default.
- W2922181508 hasPrimaryLocation W29221815081 @default.
- W2922181508 hasRelatedWork W3200719183 @default.
- W2922181508 hasRelatedWork W3204641204 @default.
- W2922181508 hasRelatedWork W3212730154 @default.
- W2922181508 hasRelatedWork W4200057378 @default.
- W2922181508 hasRelatedWork W4283016678 @default.
- W2922181508 hasRelatedWork W4288057626 @default.
- W2922181508 hasRelatedWork W4293069612 @default.
- W2922181508 hasRelatedWork W4308191010 @default.
- W2922181508 hasRelatedWork W4328133444 @default.
- W2922181508 hasRelatedWork W4375930479 @default.
- W2922181508 hasVolume "7" @default.
- W2922181508 isParatext "false" @default.
- W2922181508 isRetracted "false" @default.
- W2922181508 magId "2922181508" @default.
- W2922181508 workType "article" @default.