Matches in SemOpenAlex for { <https://semopenalex.org/work/W2922216971> ?p ?o ?g. }
- W2922216971 abstract "Artificial Intelligence is set to revolutionize multiple fields in the coming years. One subset of AI, machine learning, shows immense potential for application in a diverse set of medical specialties, including diagnostic pathology. In this study, we investigate the utility of the Apple Create ML and Google Cloud Auto ML, two machine learning platforms, in a variety of pathological scenarios involving lung and colon pathology. First, we evaluate the ability of the platforms to differentiate normal lung tissue from cancerous lung tissue. Also, the ability to accurately distinguish two subtypes of lung cancer (adenocarcinoma and squamous cell carcinoma) is examined and compared. Similarly, the ability of the two programs to differentiate colon adenocarcinoma from normal colon is assessed as is done with lung tissue. Also, cases of colon adenocarcinoma are evaluated for the presence or absence of a specific gene mutation known as KRAS. Finally, our last experiment examines the ability of the Apple and Google platforms to differentiate between adenocarcinomas of lung origin versus colon origin. In our trained models for lung and colon cancer diagnosis, both Apple and Google machine learning algorithms performed very well individually and with no statistically significant differences found between the two platforms. However, some critical factors set them apart. Apple Create ML can be used on local computers but is limited to an Apple ecosystem. Google Auto ML is not platform specific but runs only in Google Cloud with associated computational fees. In the end, both are excellent machine learning tools that have great potential in the field of diagnostic pathology, and which one to choose would depend on personal preference, programming experience, and available storage space." @default.
- W2922216971 created "2019-03-22" @default.
- W2922216971 creator A5041015359 @default.
- W2922216971 creator A5041498602 @default.
- W2922216971 creator A5048599583 @default.
- W2922216971 creator A5058316805 @default.
- W2922216971 creator A5068521585 @default.
- W2922216971 creator A5084423110 @default.
- W2922216971 creator A5089147353 @default.
- W2922216971 date "2019-03-19" @default.
- W2922216971 modified "2023-09-27" @default.
- W2922216971 title "Google Auto ML versus Apple Create ML for Histopathologic Cancer Diagnosis; Which Algorithms Are Better?" @default.
- W2922216971 cites W1666647218 @default.
- W2922216971 cites W1795020324 @default.
- W2922216971 cites W1967538052 @default.
- W2922216971 cites W2076063813 @default.
- W2922216971 cites W2076774554 @default.
- W2922216971 cites W2161381512 @default.
- W2922216971 cites W2253429366 @default.
- W2922216971 cites W2341106171 @default.
- W2922216971 cites W2346062110 @default.
- W2922216971 cites W2470130773 @default.
- W2922216971 cites W2504150216 @default.
- W2922216971 cites W2557738935 @default.
- W2922216971 cites W2581082771 @default.
- W2922216971 cites W2588978745 @default.
- W2922216971 cites W2605253636 @default.
- W2922216971 cites W2605850958 @default.
- W2922216971 cites W2607075141 @default.
- W2922216971 cites W2608231518 @default.
- W2922216971 cites W2647580717 @default.
- W2922216971 cites W2664267452 @default.
- W2922216971 cites W2760946358 @default.
- W2922216971 cites W2767969013 @default.
- W2922216971 cites W2772723798 @default.
- W2922216971 cites W2781631989 @default.
- W2922216971 cites W2783699776 @default.
- W2922216971 cites W2785200097 @default.
- W2922216971 cites W2791732570 @default.
- W2922216971 cites W2792554287 @default.
- W2922216971 cites W2801370692 @default.
- W2922216971 cites W2801711638 @default.
- W2922216971 cites W2888353531 @default.
- W2922216971 cites W2891858760 @default.
- W2922216971 cites W2903753502 @default.
- W2922216971 cites W2919115771 @default.
- W2922216971 cites W2964004560 @default.
- W2922216971 cites W3198350258 @default.
- W2922216971 cites W56241122 @default.
- W2922216971 hasPublicationYear "2019" @default.
- W2922216971 type Work @default.
- W2922216971 sameAs 2922216971 @default.
- W2922216971 citedByCount "0" @default.
- W2922216971 crossrefType "posted-content" @default.
- W2922216971 hasAuthorship W2922216971A5041015359 @default.
- W2922216971 hasAuthorship W2922216971A5041498602 @default.
- W2922216971 hasAuthorship W2922216971A5048599583 @default.
- W2922216971 hasAuthorship W2922216971A5058316805 @default.
- W2922216971 hasAuthorship W2922216971A5068521585 @default.
- W2922216971 hasAuthorship W2922216971A5084423110 @default.
- W2922216971 hasAuthorship W2922216971A5089147353 @default.
- W2922216971 hasConcept C11413529 @default.
- W2922216971 hasConcept C119857082 @default.
- W2922216971 hasConcept C121608353 @default.
- W2922216971 hasConcept C126322002 @default.
- W2922216971 hasConcept C142724271 @default.
- W2922216971 hasConcept C154945302 @default.
- W2922216971 hasConcept C2776256026 @default.
- W2922216971 hasConcept C2777714996 @default.
- W2922216971 hasConcept C2781182431 @default.
- W2922216971 hasConcept C2781187634 @default.
- W2922216971 hasConcept C41008148 @default.
- W2922216971 hasConcept C526805850 @default.
- W2922216971 hasConcept C60644358 @default.
- W2922216971 hasConcept C71924100 @default.
- W2922216971 hasConcept C86803240 @default.
- W2922216971 hasConceptScore W2922216971C11413529 @default.
- W2922216971 hasConceptScore W2922216971C119857082 @default.
- W2922216971 hasConceptScore W2922216971C121608353 @default.
- W2922216971 hasConceptScore W2922216971C126322002 @default.
- W2922216971 hasConceptScore W2922216971C142724271 @default.
- W2922216971 hasConceptScore W2922216971C154945302 @default.
- W2922216971 hasConceptScore W2922216971C2776256026 @default.
- W2922216971 hasConceptScore W2922216971C2777714996 @default.
- W2922216971 hasConceptScore W2922216971C2781182431 @default.
- W2922216971 hasConceptScore W2922216971C2781187634 @default.
- W2922216971 hasConceptScore W2922216971C41008148 @default.
- W2922216971 hasConceptScore W2922216971C526805850 @default.
- W2922216971 hasConceptScore W2922216971C60644358 @default.
- W2922216971 hasConceptScore W2922216971C71924100 @default.
- W2922216971 hasConceptScore W2922216971C86803240 @default.
- W2922216971 hasLocation W29222169711 @default.
- W2922216971 hasOpenAccess W2922216971 @default.
- W2922216971 hasPrimaryLocation W29222169711 @default.
- W2922216971 hasRelatedWork W1717307243 @default.
- W2922216971 hasRelatedWork W2185863428 @default.
- W2922216971 hasRelatedWork W2888353531 @default.
- W2922216971 hasRelatedWork W2971337201 @default.
- W2922216971 hasRelatedWork W3027468803 @default.
- W2922216971 hasRelatedWork W3027952131 @default.