Matches in SemOpenAlex for { <https://semopenalex.org/work/W2922233345> ?p ?o ?g. }
Showing items 1 to 73 of
73
with 100 items per page.
- W2922233345 abstract "Author(s): Lyu, Jiancheng | Advisor(s): Xin, Jack; Yu, Yifeng | Abstract: In chaotic advection generated by a class of time periodic cellular flows, the residual diffusion refers to the non-zero effective (homogenized) diffusion in the limit of zero molecular diffusion as a result of chaotic mixing of the streamlines. We study the residual diffusion phenomenon computationally and analytically.We make use of the Poincar #x27;e map of the advection-diffusion equation to bypass long time simulation and gain accuracy in computing effective diffusivity and learning adaptive basis. We observe a non-monotone relationship between residual diffusivity and the amount of chaos in the advection, though the overall trend is that sufficient chaos leads to higher residual diffusivity. The adaptive orthogonal basis with built-in sharp gradient structures is constructed by taking snapshots of solutions in time, preprocessing with deep neural network (DNN) if necessary and performing singular value decomposition of the matrix consisting of those snapshots as column vectors. The trained orthogonal adaptive basis makes possible low cost computation of the effective diffusivities at smaller molecular diffusivities. The testing errors decrease as the training occurs at smaller molecular diffusivities. We also study the enhanced diffusivity in the so called elephant random walk model with stops by including symmetric random walk steps at small probability $epsilon$. At any $epsilon g 0$, the large time behavior transitions from sub-diffusive at $epsilon = 0$ to diffusive in a wedge shaped parameter regime where the diffusivity is strictly above that in the un-perturbed model in the $epsilon downarrow 0$ limit. The perturbed model is shown to be solvable with the first two moments and their asymptotics calculated exactly in both one and two space dimensions. The model provides a discrete analytical setting of the residual diffusion phenomenon as molecular diffusivity tends to zero. On a related nonlinear case, we give theoretical proof that the turbulent flame speed as an effective burning velocity is decreasing with respect to the curvature diffusivity (Markstein number) for shear flows in the well-known G-equation model. Besides, we solve the selection problem of weak solutions when the Markstein number goes to zero and solutions approach those of the inviscid G-equation model. The limiting solution is given by a closed form analytical formula. Finally for the dimensionality reduction on DNNs, we propose BinaryRelax, a simple two-phase algorithm, for training DNNs with quantized weights. We relax the hard constraint that characterizes the quantization of weights into a continuous regularizer via Moreau envelope, which turns out to be the squared Euclidean distance to the set of quantized weights. The pseudo quantized weights are obtained by linearly interpolating between the float weights and their quantizations. A continuation strategy is adopted to push the weights towards the quantized state by gradually increasing the regularization parameter. We test BinaryRelax on the benchmark CIFAR and ImageNet color image datasets to demonstrate the superiority of the relaxed quantization approach and the improved accuracy over the state-of-the-art training methods. Moreover, we prove the convergence of BinaryRelax under an approximate orthogonality condition." @default.
- W2922233345 created "2019-03-22" @default.
- W2922233345 creator A5006348455 @default.
- W2922233345 date "2018-01-01" @default.
- W2922233345 modified "2023-09-23" @default.
- W2922233345 title "Studies of Residual Diffusivity and Curvature Dependent Effective Velocity in Fluid Flows by Analytical and Mechine Learning Methods" @default.
- W2922233345 hasPublicationYear "2018" @default.
- W2922233345 type Work @default.
- W2922233345 sameAs 2922233345 @default.
- W2922233345 citedByCount "0" @default.
- W2922233345 crossrefType "journal-article" @default.
- W2922233345 hasAuthorship W2922233345A5006348455 @default.
- W2922233345 hasConcept C11413529 @default.
- W2922233345 hasConcept C121332964 @default.
- W2922233345 hasConcept C121864883 @default.
- W2922233345 hasConcept C134306372 @default.
- W2922233345 hasConcept C154945302 @default.
- W2922233345 hasConcept C155512373 @default.
- W2922233345 hasConcept C195065555 @default.
- W2922233345 hasConcept C2524010 @default.
- W2922233345 hasConcept C2777052490 @default.
- W2922233345 hasConcept C33923547 @default.
- W2922233345 hasConcept C37668627 @default.
- W2922233345 hasConcept C41008148 @default.
- W2922233345 hasConcept C5072599 @default.
- W2922233345 hasConcept C57879066 @default.
- W2922233345 hasConcept C60439489 @default.
- W2922233345 hasConcept C69357855 @default.
- W2922233345 hasConcept C97355855 @default.
- W2922233345 hasConceptScore W2922233345C11413529 @default.
- W2922233345 hasConceptScore W2922233345C121332964 @default.
- W2922233345 hasConceptScore W2922233345C121864883 @default.
- W2922233345 hasConceptScore W2922233345C134306372 @default.
- W2922233345 hasConceptScore W2922233345C154945302 @default.
- W2922233345 hasConceptScore W2922233345C155512373 @default.
- W2922233345 hasConceptScore W2922233345C195065555 @default.
- W2922233345 hasConceptScore W2922233345C2524010 @default.
- W2922233345 hasConceptScore W2922233345C2777052490 @default.
- W2922233345 hasConceptScore W2922233345C33923547 @default.
- W2922233345 hasConceptScore W2922233345C37668627 @default.
- W2922233345 hasConceptScore W2922233345C41008148 @default.
- W2922233345 hasConceptScore W2922233345C5072599 @default.
- W2922233345 hasConceptScore W2922233345C57879066 @default.
- W2922233345 hasConceptScore W2922233345C60439489 @default.
- W2922233345 hasConceptScore W2922233345C69357855 @default.
- W2922233345 hasConceptScore W2922233345C97355855 @default.
- W2922233345 hasLocation W29222333451 @default.
- W2922233345 hasOpenAccess W2922233345 @default.
- W2922233345 hasPrimaryLocation W29222333451 @default.
- W2922233345 hasRelatedWork W1676586228 @default.
- W2922233345 hasRelatedWork W1907790674 @default.
- W2922233345 hasRelatedWork W2079275870 @default.
- W2922233345 hasRelatedWork W2250160424 @default.
- W2922233345 hasRelatedWork W2273875793 @default.
- W2922233345 hasRelatedWork W2535298008 @default.
- W2922233345 hasRelatedWork W2571956264 @default.
- W2922233345 hasRelatedWork W2612785023 @default.
- W2922233345 hasRelatedWork W2765206863 @default.
- W2922233345 hasRelatedWork W2949143316 @default.
- W2922233345 hasRelatedWork W2950992309 @default.
- W2922233345 hasRelatedWork W2961553317 @default.
- W2922233345 hasRelatedWork W2963775353 @default.
- W2922233345 hasRelatedWork W2972394447 @default.
- W2922233345 hasRelatedWork W3080250954 @default.
- W2922233345 hasRelatedWork W3087484659 @default.
- W2922233345 hasRelatedWork W3098241049 @default.
- W2922233345 hasRelatedWork W3103326127 @default.
- W2922233345 hasRelatedWork W3182050959 @default.
- W2922233345 hasRelatedWork W3200568146 @default.
- W2922233345 isParatext "false" @default.
- W2922233345 isRetracted "false" @default.
- W2922233345 magId "2922233345" @default.
- W2922233345 workType "article" @default.