Matches in SemOpenAlex for { <https://semopenalex.org/work/W2922245067> ?p ?o ?g. }
- W2922245067 abstract "Diffusion weighted magnetic resonance imaging (DW-MRI) is interpreted as a quantitative method that is sensitive to tissue microarchitecture at a millimeter scale. However, the sensitization is dependent on acquisition sequences (e.g., diffusion time, gradient strength, etc.) and susceptible to imaging artifacts. Hence, comparison of quantitative DW-MRI biomarkers across field strengths (including different scanners, hardware performance, and sequence design considerations) is a challenging area of research. We propose a novel method to estimate microstructure using DW-MRI that is robust to scanner difference between 1.5T and 3T imaging. We propose to use a null space deep network (NSDN) architecture to model DW-MRI signal as fiber orientation distributions (FOD) to represent tissue microstructure. The NSDN approach is consistent with histologically observed microstructure (on previously acquired ex vivo squirrel monkey dataset) and scan-rescan data. The contribution of this work is that we incorporate identical dual networks (IDN) to minimize the influence of scanner effects via scan-rescan data. Briefly, our estimator is trained on two datasets. First, a histology dataset was acquired on three squirrel monkeys with corresponding DW-MRI and confocal histology (512 independent voxels). Second, 37 control subjects from the Baltimore Longitudinal Study of Aging (67-95 y/o) were identified who had been scanned at 1.5T and 3T scanners (b-value of 700 s/mm<sup>2</sup> , voxel resolution at 2.2mm, 30-32 gradient volumes) with an average interval of 4 years (standard deviation 1.3 years). After image registration, we used paired white matter (WM) voxels for 17 subjects and 440 histology voxels for training and 20 subjects and 72 histology voxels for testing. We compare the proposed estimator with super-resolved constrained spherical deconvolution (CSD) and a previously presented regression deep neural network (DNN). NSDN outperformed CSD and DNN in angular correlation coefficient (ACC) 0.81 versus 0.28 and 0.46, mean squared error (MSE) 0.001 versus 0.003 and 0.03, and general fractional anisotropy (GFA) 0.05 versus 0.05 and 0.09. Further validation and evaluation with contemporaneous imaging are necessary, but the NSDN is promising avenue for building understanding of microarchitecture in a consistent and deviceindependent manner." @default.
- W2922245067 created "2019-03-22" @default.
- W2922245067 creator A5003112344 @default.
- W2922245067 creator A5010406734 @default.
- W2922245067 creator A5024219876 @default.
- W2922245067 creator A5031488038 @default.
- W2922245067 creator A5035428224 @default.
- W2922245067 creator A5037961149 @default.
- W2922245067 creator A5042877366 @default.
- W2922245067 creator A5044056811 @default.
- W2922245067 creator A5055625757 @default.
- W2922245067 creator A5056838937 @default.
- W2922245067 creator A5060726223 @default.
- W2922245067 creator A5067191302 @default.
- W2922245067 creator A5075735203 @default.
- W2922245067 creator A5077742771 @default.
- W2922245067 creator A5078396679 @default.
- W2922245067 creator A5079511574 @default.
- W2922245067 creator A5089965397 @default.
- W2922245067 creator A5090023100 @default.
- W2922245067 creator A5091363743 @default.
- W2922245067 date "2019-03-15" @default.
- W2922245067 modified "2023-10-14" @default.
- W2922245067 title "Harmonizing 1.5T/3T diffusion weighted MRI through development of deep learning stabilized microarchitecture estimators" @default.
- W2922245067 cites W1497909821 @default.
- W2922245067 cites W1964802316 @default.
- W2922245067 cites W1970170327 @default.
- W2922245067 cites W1980010847 @default.
- W2922245067 cites W1984453610 @default.
- W2922245067 cites W2021228864 @default.
- W2922245067 cites W2026812901 @default.
- W2922245067 cites W2059685157 @default.
- W2922245067 cites W2060416311 @default.
- W2922245067 cites W2066931954 @default.
- W2922245067 cites W2071881327 @default.
- W2922245067 cites W2083789279 @default.
- W2922245067 cites W2085091083 @default.
- W2922245067 cites W2115557151 @default.
- W2922245067 cites W2118347577 @default.
- W2922245067 cites W2121332562 @default.
- W2922245067 cites W212537071 @default.
- W2922245067 cites W2127309075 @default.
- W2922245067 cites W2128207744 @default.
- W2922245067 cites W2142900310 @default.
- W2922245067 cites W2148726987 @default.
- W2922245067 cites W2305716341 @default.
- W2922245067 cites W2344337444 @default.
- W2922245067 cites W2587656219 @default.
- W2922245067 cites W2594089015 @default.
- W2922245067 cites W2794390235 @default.
- W2922245067 cites W2950030754 @default.
- W2922245067 cites W4206679801 @default.
- W2922245067 cites W4229794523 @default.
- W2922245067 cites W4256188663 @default.
- W2922245067 doi "https://doi.org/10.1117/12.2512902" @default.
- W2922245067 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7034942" @default.
- W2922245067 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32089583" @default.
- W2922245067 hasPublicationYear "2019" @default.
- W2922245067 type Work @default.
- W2922245067 sameAs 2922245067 @default.
- W2922245067 citedByCount "5" @default.
- W2922245067 countsByYear W29222450672019 @default.
- W2922245067 countsByYear W29222450672021 @default.
- W2922245067 countsByYear W29222450672022 @default.
- W2922245067 countsByYear W29222450672023 @default.
- W2922245067 crossrefType "proceedings-article" @default.
- W2922245067 hasAuthorship W2922245067A5003112344 @default.
- W2922245067 hasAuthorship W2922245067A5010406734 @default.
- W2922245067 hasAuthorship W2922245067A5024219876 @default.
- W2922245067 hasAuthorship W2922245067A5031488038 @default.
- W2922245067 hasAuthorship W2922245067A5035428224 @default.
- W2922245067 hasAuthorship W2922245067A5037961149 @default.
- W2922245067 hasAuthorship W2922245067A5042877366 @default.
- W2922245067 hasAuthorship W2922245067A5044056811 @default.
- W2922245067 hasAuthorship W2922245067A5055625757 @default.
- W2922245067 hasAuthorship W2922245067A5056838937 @default.
- W2922245067 hasAuthorship W2922245067A5060726223 @default.
- W2922245067 hasAuthorship W2922245067A5067191302 @default.
- W2922245067 hasAuthorship W2922245067A5075735203 @default.
- W2922245067 hasAuthorship W2922245067A5077742771 @default.
- W2922245067 hasAuthorship W2922245067A5078396679 @default.
- W2922245067 hasAuthorship W2922245067A5079511574 @default.
- W2922245067 hasAuthorship W2922245067A5089965397 @default.
- W2922245067 hasAuthorship W2922245067A5090023100 @default.
- W2922245067 hasAuthorship W2922245067A5091363743 @default.
- W2922245067 hasBestOaLocation W29222450672 @default.
- W2922245067 hasConcept C105795698 @default.
- W2922245067 hasConcept C118552586 @default.
- W2922245067 hasConcept C121332964 @default.
- W2922245067 hasConcept C126838900 @default.
- W2922245067 hasConcept C143409427 @default.
- W2922245067 hasConcept C149550507 @default.
- W2922245067 hasConcept C153180895 @default.
- W2922245067 hasConcept C154945302 @default.
- W2922245067 hasConcept C185429906 @default.
- W2922245067 hasConcept C2779751349 @default.
- W2922245067 hasConcept C2989005 @default.
- W2922245067 hasConcept C33923547 @default.
- W2922245067 hasConcept C41008148 @default.
- W2922245067 hasConcept C46141821 @default.