Matches in SemOpenAlex for { <https://semopenalex.org/work/W2922260520> ?p ?o ?g. }
Showing items 1 to 98 of
98
with 100 items per page.
- W2922260520 endingPage "1276" @default.
- W2922260520 startingPage "1262" @default.
- W2922260520 abstract "High-quality data collection is crucial for mobile crowd sensing (MCS) with various applications like smart cities and emergency rescues, where various unmanned mobile terminals (MTs), e.g., driverless cars and unmanned aerial vehicles (UAVs), are equipped with different sensors that aid to collect data. However, they are limited with fixed carrying capacity, and thus, MT's energy resource and sensing range are constrained. It is quite challenging to navigate a group of MTs to move around a target area to maximize their total amount of collected data with the limited energy reserve, while geographical fairness among those point-of-interests (PoIs) should also be maximized. It is even more challenging if fully distributed execution is enforced, where no central control is allowed at the backend. To this end, we propose to leverage emerging deep reinforcement learning (DRL) techniques for directing MT's sensing and movement and to present a novel and highly efficient control algorithm, called energy-efficient distributed MCS (Edics). The proposed neural network integrates convolutional neural network (CNN) for feature extraction and then makes decision under the guidance of multi-agent deep deterministic policy gradient (DDPG) method in a fully distributed manner. We also propose two enhancements into Edics with N-step return and prioritized experienced replay buffer. Finally, we evaluate Edics through extensive simulations and found the appropriate set of hyperparameters in terms of number of CNN hidden layers and neural units for all the fully connected layers. Compared with three commonly used baselines, results have shown its benefits." @default.
- W2922260520 created "2019-03-22" @default.
- W2922260520 creator A5032686473 @default.
- W2922260520 creator A5043326849 @default.
- W2922260520 creator A5072070557 @default.
- W2922260520 date "2019-06-01" @default.
- W2922260520 modified "2023-10-09" @default.
- W2922260520 title "Energy-Efficient Distributed Mobile Crowd Sensing: A Deep Learning Approach" @default.
- W2922260520 cites W1597217844 @default.
- W2922260520 cites W167368901 @default.
- W2922260520 cites W1932847118 @default.
- W2922260520 cites W1991642373 @default.
- W2922260520 cites W1994112109 @default.
- W2922260520 cites W1994500462 @default.
- W2922260520 cites W1996573126 @default.
- W2922260520 cites W2057041225 @default.
- W2922260520 cites W2063764142 @default.
- W2922260520 cites W2066065861 @default.
- W2922260520 cites W2073765234 @default.
- W2922260520 cites W2079204536 @default.
- W2922260520 cites W2116175219 @default.
- W2922260520 cites W2141696572 @default.
- W2922260520 cites W2145339207 @default.
- W2922260520 cites W2343896184 @default.
- W2922260520 cites W2496884645 @default.
- W2922260520 cites W2511450327 @default.
- W2922260520 cites W2516948806 @default.
- W2922260520 cites W2524539616 @default.
- W2922260520 cites W2526800568 @default.
- W2922260520 cites W2574161003 @default.
- W2922260520 cites W2773423866 @default.
- W2922260520 cites W2790860712 @default.
- W2922260520 cites W2809912633 @default.
- W2922260520 cites W2810638323 @default.
- W2922260520 cites W2887817291 @default.
- W2922260520 cites W4214717370 @default.
- W2922260520 doi "https://doi.org/10.1109/jsac.2019.2904353" @default.
- W2922260520 hasPublicationYear "2019" @default.
- W2922260520 type Work @default.
- W2922260520 sameAs 2922260520 @default.
- W2922260520 citedByCount "86" @default.
- W2922260520 countsByYear W29222605202019 @default.
- W2922260520 countsByYear W29222605202020 @default.
- W2922260520 countsByYear W29222605202021 @default.
- W2922260520 countsByYear W29222605202022 @default.
- W2922260520 countsByYear W29222605202023 @default.
- W2922260520 crossrefType "journal-article" @default.
- W2922260520 hasAuthorship W2922260520A5032686473 @default.
- W2922260520 hasAuthorship W2922260520A5043326849 @default.
- W2922260520 hasAuthorship W2922260520A5072070557 @default.
- W2922260520 hasConcept C108583219 @default.
- W2922260520 hasConcept C111919701 @default.
- W2922260520 hasConcept C119599485 @default.
- W2922260520 hasConcept C120314980 @default.
- W2922260520 hasConcept C127413603 @default.
- W2922260520 hasConcept C153083717 @default.
- W2922260520 hasConcept C154945302 @default.
- W2922260520 hasConcept C186967261 @default.
- W2922260520 hasConcept C2742236 @default.
- W2922260520 hasConcept C41008148 @default.
- W2922260520 hasConcept C79403827 @default.
- W2922260520 hasConcept C81363708 @default.
- W2922260520 hasConcept C97541855 @default.
- W2922260520 hasConceptScore W2922260520C108583219 @default.
- W2922260520 hasConceptScore W2922260520C111919701 @default.
- W2922260520 hasConceptScore W2922260520C119599485 @default.
- W2922260520 hasConceptScore W2922260520C120314980 @default.
- W2922260520 hasConceptScore W2922260520C127413603 @default.
- W2922260520 hasConceptScore W2922260520C153083717 @default.
- W2922260520 hasConceptScore W2922260520C154945302 @default.
- W2922260520 hasConceptScore W2922260520C186967261 @default.
- W2922260520 hasConceptScore W2922260520C2742236 @default.
- W2922260520 hasConceptScore W2922260520C41008148 @default.
- W2922260520 hasConceptScore W2922260520C79403827 @default.
- W2922260520 hasConceptScore W2922260520C81363708 @default.
- W2922260520 hasConceptScore W2922260520C97541855 @default.
- W2922260520 hasFunder F4320321001 @default.
- W2922260520 hasIssue "6" @default.
- W2922260520 hasLocation W29222605201 @default.
- W2922260520 hasOpenAccess W2922260520 @default.
- W2922260520 hasPrimaryLocation W29222605201 @default.
- W2922260520 hasRelatedWork W2731899572 @default.
- W2922260520 hasRelatedWork W2999805992 @default.
- W2922260520 hasRelatedWork W3011074480 @default.
- W2922260520 hasRelatedWork W3116150086 @default.
- W2922260520 hasRelatedWork W3133861977 @default.
- W2922260520 hasRelatedWork W3192840557 @default.
- W2922260520 hasRelatedWork W4200173597 @default.
- W2922260520 hasRelatedWork W4291897433 @default.
- W2922260520 hasRelatedWork W4312417841 @default.
- W2922260520 hasRelatedWork W4321369474 @default.
- W2922260520 hasVolume "37" @default.
- W2922260520 isParatext "false" @default.
- W2922260520 isRetracted "false" @default.
- W2922260520 magId "2922260520" @default.
- W2922260520 workType "article" @default.