Matches in SemOpenAlex for { <https://semopenalex.org/work/W2922264163> ?p ?o ?g. }
- W2922264163 endingPage "120" @default.
- W2922264163 startingPage "112" @default.
- W2922264163 abstract "Current rates of biodiversity loss do not allow for inefficient monitoring. Optimized monitoring maximizes the ratio between information and sampling effort (i.e., time and costs). Sampling effort increases with the number and size of sampling units. We hypothesize that an optimal size and number of sampling units can be determined providing maximal information via minimal effort. We apply an approach that identifies the optimal size and number of sampling quadrats. The approach can be adapted to any study system. Here we focus on alpine grassland, a diverse but threatened ecosystem. Gran Paradiso National Park, Italy. We sampled nine 20 m × 20 m-plots. Each plot consisted of 100 2 m × 2 m-subplots. Species richness and Shannon diversity were quantified for different sizes and quantities of subplots. We simulated larger subplot sizes by unifying adjacent 2 m × 2 m-subplots. Shannon’s information entropy was used to quantify information content among richness and diversity values resulting from different subplot sizes and quantities. The optimal size and number of subplots is the lowest size and number of subplots returning maximal information. This optimal subplot size and number was determined by Mood’s median test and segmented linear regression, respectively. The information content among richness values increased with subplot size, irrespective of the number of subplots. Therefore, the largest subplot size available is the optimal size for information about richness. Information content among diversity values increased with subplot size if 18 or less subplots were considered, and decreased if at least 27 subplots were sampled. The subplot quantity consequently determined whether the smallest or largest subplot size available is the optimal size, and whether the optimal size can be generalized across richness and diversity. Given a 2 m × 2 m size, we estimated an optimal quantity of 54. Given a size of 4 m × 4 m, we estimated an optimal number of 36. The optimal number of plots can be generalized across both indices because it barely differed between the indices given a fixed subplot size. The information content among richness and diversity values depends on the sampling scale. Shannon’s information entropy can be used to identify the optimal number and size of plots that return most information with least sampling effort. Our approach can be adapted to other study systems to create an efficient in-situ sampling design, which improves biodiversity monitoring and conservation under rapid environmental change." @default.
- W2922264163 created "2019-03-22" @default.
- W2922264163 creator A5028818736 @default.
- W2922264163 creator A5031127468 @default.
- W2922264163 creator A5037164854 @default.
- W2922264163 creator A5054949802 @default.
- W2922264163 creator A5080212261 @default.
- W2922264163 date "2019-05-01" @default.
- W2922264163 modified "2023-10-18" @default.
- W2922264163 title "Optimizing sampling effort and information content of biodiversity surveys: a case study of alpine grassland" @default.
- W2922264163 cites W1793984240 @default.
- W2922264163 cites W1834602081 @default.
- W2922264163 cites W1980222029 @default.
- W2922264163 cites W1984715409 @default.
- W2922264163 cites W1996480479 @default.
- W2922264163 cites W2002303396 @default.
- W2922264163 cites W2006690660 @default.
- W2922264163 cites W2009879136 @default.
- W2922264163 cites W2010436309 @default.
- W2922264163 cites W2015454008 @default.
- W2922264163 cites W2022009112 @default.
- W2922264163 cites W2035341505 @default.
- W2922264163 cites W2035688179 @default.
- W2922264163 cites W2040766929 @default.
- W2922264163 cites W2048677918 @default.
- W2922264163 cites W2050253873 @default.
- W2922264163 cites W2061608097 @default.
- W2922264163 cites W2066518744 @default.
- W2922264163 cites W2072811688 @default.
- W2922264163 cites W2086043699 @default.
- W2922264163 cites W2098012392 @default.
- W2922264163 cites W2103336148 @default.
- W2922264163 cites W2114373394 @default.
- W2922264163 cites W2121209243 @default.
- W2922264163 cites W2129056096 @default.
- W2922264163 cites W2129735040 @default.
- W2922264163 cites W2136464549 @default.
- W2922264163 cites W2136539381 @default.
- W2922264163 cites W2148216095 @default.
- W2922264163 cites W2162305105 @default.
- W2922264163 cites W2163403808 @default.
- W2922264163 cites W2167503967 @default.
- W2922264163 cites W2167830596 @default.
- W2922264163 cites W2169286869 @default.
- W2922264163 cites W2169345594 @default.
- W2922264163 cites W2196454817 @default.
- W2922264163 cites W2316678459 @default.
- W2922264163 cites W2322480672 @default.
- W2922264163 cites W2330000074 @default.
- W2922264163 cites W2402615576 @default.
- W2922264163 cites W2412580205 @default.
- W2922264163 cites W2555102119 @default.
- W2922264163 cites W2787978013 @default.
- W2922264163 cites W2800682579 @default.
- W2922264163 cites W2916387549 @default.
- W2922264163 cites W4234074617 @default.
- W2922264163 cites W4234637659 @default.
- W2922264163 cites W4251733871 @default.
- W2922264163 cites W4252891217 @default.
- W2922264163 doi "https://doi.org/10.1016/j.ecoinf.2019.03.003" @default.
- W2922264163 hasPublicationYear "2019" @default.
- W2922264163 type Work @default.
- W2922264163 sameAs 2922264163 @default.
- W2922264163 citedByCount "15" @default.
- W2922264163 countsByYear W29222641632019 @default.
- W2922264163 countsByYear W29222641632020 @default.
- W2922264163 countsByYear W29222641632021 @default.
- W2922264163 countsByYear W29222641632022 @default.
- W2922264163 countsByYear W29222641632023 @default.
- W2922264163 crossrefType "journal-article" @default.
- W2922264163 hasAuthorship W2922264163A5028818736 @default.
- W2922264163 hasAuthorship W2922264163A5031127468 @default.
- W2922264163 hasAuthorship W2922264163A5037164854 @default.
- W2922264163 hasAuthorship W2922264163A5054949802 @default.
- W2922264163 hasAuthorship W2922264163A5080212261 @default.
- W2922264163 hasBestOaLocation W29222641631 @default.
- W2922264163 hasConcept C105795698 @default.
- W2922264163 hasConcept C106131492 @default.
- W2922264163 hasConcept C107394435 @default.
- W2922264163 hasConcept C130217890 @default.
- W2922264163 hasConcept C140779682 @default.
- W2922264163 hasConcept C187604713 @default.
- W2922264163 hasConcept C18903297 @default.
- W2922264163 hasConcept C2775835988 @default.
- W2922264163 hasConcept C2778091200 @default.
- W2922264163 hasConcept C31972630 @default.
- W2922264163 hasConcept C33923547 @default.
- W2922264163 hasConcept C41008148 @default.
- W2922264163 hasConcept C53565203 @default.
- W2922264163 hasConcept C86803240 @default.
- W2922264163 hasConceptScore W2922264163C105795698 @default.
- W2922264163 hasConceptScore W2922264163C106131492 @default.
- W2922264163 hasConceptScore W2922264163C107394435 @default.
- W2922264163 hasConceptScore W2922264163C130217890 @default.
- W2922264163 hasConceptScore W2922264163C140779682 @default.
- W2922264163 hasConceptScore W2922264163C187604713 @default.
- W2922264163 hasConceptScore W2922264163C18903297 @default.
- W2922264163 hasConceptScore W2922264163C2775835988 @default.