Matches in SemOpenAlex for { <https://semopenalex.org/work/W2922303764> ?p ?o ?g. }
- W2922303764 endingPage "619" @default.
- W2922303764 startingPage "619" @default.
- W2922303764 abstract "When the spatial distribution of winter wheat is extracted from high-resolution remote sensing imagery using convolutional neural networks (CNN), field edge results are usually rough, resulting in lowered overall accuracy. This study proposed a new per-pixel classification model using CNN and Bayesian models (CNN-Bayesian model) for improved extraction accuracy. In this model, a feature extractor generates a feature vector for each pixel, an encoder transforms the feature vector of each pixel into a category-code vector, and a two-level classifier uses the difference between elements of category-probability vectors as the confidence value to perform per-pixel classifications. The first level is used to determine the category of a pixel with high confidence, and the second level is an improved Bayesian model used to determine the category of low-confidence pixels. The CNN-Bayesian model was trained and tested on Gaofen 2 satellite images. Compared to existing models, our approach produced an improvement in overall accuracy, the overall accuracy of SegNet, DeepLab, VGG-Ex, and CNN-Bayesian was 0.791, 0.852, 0.892, and 0.946, respectively. Thus, this approach can produce superior results when winter wheat spatial distribution is extracted from satellite imagery." @default.
- W2922303764 created "2019-03-22" @default.
- W2922303764 creator A5035760915 @default.
- W2922303764 creator A5038754344 @default.
- W2922303764 creator A5039909980 @default.
- W2922303764 creator A5044713728 @default.
- W2922303764 creator A5060640583 @default.
- W2922303764 creator A5063689776 @default.
- W2922303764 creator A5078668203 @default.
- W2922303764 creator A5081965214 @default.
- W2922303764 date "2019-03-14" @default.
- W2922303764 modified "2023-10-17" @default.
- W2922303764 title "A New CNN-Bayesian Model for Extracting Improved Winter Wheat Spatial Distribution from GF-2 imagery" @default.
- W2922303764 cites W1974981350 @default.
- W2922303764 cites W2002568643 @default.
- W2922303764 cites W2023082882 @default.
- W2922303764 cites W2063907334 @default.
- W2922303764 cites W2079454091 @default.
- W2922303764 cites W2089874131 @default.
- W2922303764 cites W2090231298 @default.
- W2922303764 cites W2097117768 @default.
- W2922303764 cites W2103079830 @default.
- W2922303764 cites W2153538582 @default.
- W2922303764 cites W2194775991 @default.
- W2922303764 cites W2253590344 @default.
- W2922303764 cites W2302241271 @default.
- W2922303764 cites W2322070810 @default.
- W2922303764 cites W2412782625 @default.
- W2922303764 cites W2522356675 @default.
- W2922303764 cites W2584198282 @default.
- W2922303764 cites W2612676323 @default.
- W2922303764 cites W2616755213 @default.
- W2922303764 cites W2618530766 @default.
- W2922303764 cites W2737334123 @default.
- W2922303764 cites W2743142445 @default.
- W2922303764 cites W2756833625 @default.
- W2922303764 cites W2764012408 @default.
- W2922303764 cites W2765783050 @default.
- W2922303764 cites W2769973569 @default.
- W2922303764 cites W2774245783 @default.
- W2922303764 cites W2783608381 @default.
- W2922303764 cites W2800002789 @default.
- W2922303764 cites W2807914609 @default.
- W2922303764 cites W2809034148 @default.
- W2922303764 cites W2811217578 @default.
- W2922303764 cites W2886493749 @default.
- W2922303764 cites W2888815532 @default.
- W2922303764 cites W2893415549 @default.
- W2922303764 cites W2894587475 @default.
- W2922303764 cites W2899260303 @default.
- W2922303764 cites W2899594121 @default.
- W2922303764 cites W2900905795 @default.
- W2922303764 cites W2901871634 @default.
- W2922303764 cites W2904005494 @default.
- W2922303764 cites W2906233029 @default.
- W2922303764 cites W2908920951 @default.
- W2922303764 cites W2952651429 @default.
- W2922303764 cites W2963881378 @default.
- W2922303764 cites W2996180937 @default.
- W2922303764 cites W4383571054 @default.
- W2922303764 cites W4385441029 @default.
- W2922303764 doi "https://doi.org/10.3390/rs11060619" @default.
- W2922303764 hasPublicationYear "2019" @default.
- W2922303764 type Work @default.
- W2922303764 sameAs 2922303764 @default.
- W2922303764 citedByCount "8" @default.
- W2922303764 countsByYear W29223037642019 @default.
- W2922303764 countsByYear W29223037642020 @default.
- W2922303764 countsByYear W29223037642021 @default.
- W2922303764 countsByYear W29223037642022 @default.
- W2922303764 crossrefType "journal-article" @default.
- W2922303764 hasAuthorship W2922303764A5035760915 @default.
- W2922303764 hasAuthorship W2922303764A5038754344 @default.
- W2922303764 hasAuthorship W2922303764A5039909980 @default.
- W2922303764 hasAuthorship W2922303764A5044713728 @default.
- W2922303764 hasAuthorship W2922303764A5060640583 @default.
- W2922303764 hasAuthorship W2922303764A5063689776 @default.
- W2922303764 hasAuthorship W2922303764A5078668203 @default.
- W2922303764 hasAuthorship W2922303764A5081965214 @default.
- W2922303764 hasBestOaLocation W29223037641 @default.
- W2922303764 hasConcept C107673813 @default.
- W2922303764 hasConcept C153180895 @default.
- W2922303764 hasConcept C154945302 @default.
- W2922303764 hasConcept C160633673 @default.
- W2922303764 hasConcept C33923547 @default.
- W2922303764 hasConcept C41008148 @default.
- W2922303764 hasConcept C81363708 @default.
- W2922303764 hasConceptScore W2922303764C107673813 @default.
- W2922303764 hasConceptScore W2922303764C153180895 @default.
- W2922303764 hasConceptScore W2922303764C154945302 @default.
- W2922303764 hasConceptScore W2922303764C160633673 @default.
- W2922303764 hasConceptScore W2922303764C33923547 @default.
- W2922303764 hasConceptScore W2922303764C41008148 @default.
- W2922303764 hasConceptScore W2922303764C81363708 @default.
- W2922303764 hasFunder F4320324174 @default.
- W2922303764 hasFunder F4320326181 @default.
- W2922303764 hasIssue "6" @default.
- W2922303764 hasLocation W29223037641 @default.