Matches in SemOpenAlex for { <https://semopenalex.org/work/W2922307118> ?p ?o ?g. }
- W2922307118 endingPage "234" @default.
- W2922307118 startingPage "224" @default.
- W2922307118 abstract "Wildfires occurring near and within cities are a potential threat to the population's life and health and can cause significant economic damage by destroying infrastructure and private property. Due to the relatively small area of these wildlands, the accuracy of fire risk-assessment plays a significant role in fire management. Introducing the experience of real events can improve accuracy. But this approach is limited by a lack of knowledge of pre-fire conditions, mainly vegetation characteristics as related to their definition as a fuel parameter because of their high temporal variation. To solve this problem, an Artificial Neural Network (ANN) was designed to reconstruct the spectral characteristics of the vegetation just before the fire with spatial resolution 0.5-2 m from the Landsat image. To test the effectiveness of the proposed methods, the approach has been examined on urban vegetation sites and applied to restore spectral information of the actual vegetation patch before it was burned in 2016 in Haifa, Israel. The results show that the reconstructed RGB image allows for mapping the location of green vegetation with high spatial accuracy. However, spectral data in the visible range have some limitations when it comes to identifying differences between soil and dry plants. The reconstructed image was used to sharp the original data from Landsat. Normalized Difference Vegetation Index maps were produced from the resulting high-resolution multispectral image. The output maps allow to determine the location of vegetation and estimate the level of its dryness on the urban wildland landscape. The proposed method aims to estimate vegetation dryness and, as a result, identify the fuel characteristics at the time of the fire. It has the potential of using for evaluation and improve the weights of the input parameters for the fire-risk assessment and fire-behavior modeling on a specific area." @default.
- W2922307118 created "2019-03-22" @default.
- W2922307118 creator A5023420926 @default.
- W2922307118 creator A5030589098 @default.
- W2922307118 creator A5041722756 @default.
- W2922307118 creator A5050831226 @default.
- W2922307118 date "2019-05-01" @default.
- W2922307118 modified "2023-09-24" @default.
- W2922307118 title "Reconstructing pre-fire vegetation condition in the wildland urban interface (WUI) using artificial neural network" @default.
- W2922307118 cites W1885185971 @default.
- W2922307118 cites W1970920827 @default.
- W2922307118 cites W1971725987 @default.
- W2922307118 cites W1973125098 @default.
- W2922307118 cites W1983632627 @default.
- W2922307118 cites W1988713966 @default.
- W2922307118 cites W1989279348 @default.
- W2922307118 cites W1991022601 @default.
- W2922307118 cites W2015316493 @default.
- W2922307118 cites W2027254180 @default.
- W2922307118 cites W2031948144 @default.
- W2922307118 cites W2051117095 @default.
- W2922307118 cites W2056496234 @default.
- W2922307118 cites W2065407071 @default.
- W2922307118 cites W2068730661 @default.
- W2922307118 cites W2068897254 @default.
- W2922307118 cites W2077458446 @default.
- W2922307118 cites W2079447599 @default.
- W2922307118 cites W2080868907 @default.
- W2922307118 cites W2094157642 @default.
- W2922307118 cites W2096289038 @default.
- W2922307118 cites W2109201676 @default.
- W2922307118 cites W2118247391 @default.
- W2922307118 cites W2119077559 @default.
- W2922307118 cites W2144230836 @default.
- W2922307118 cites W2159596414 @default.
- W2922307118 cites W2159690339 @default.
- W2922307118 cites W2162769975 @default.
- W2922307118 cites W2166516660 @default.
- W2922307118 cites W2331319323 @default.
- W2922307118 cites W2414439895 @default.
- W2922307118 cites W2552160972 @default.
- W2922307118 cites W2791564318 @default.
- W2922307118 cites W2794557836 @default.
- W2922307118 cites W4229583159 @default.
- W2922307118 cites W4248268197 @default.
- W2922307118 doi "https://doi.org/10.1016/j.jenvman.2019.02.091" @default.
- W2922307118 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30851561" @default.
- W2922307118 hasPublicationYear "2019" @default.
- W2922307118 type Work @default.
- W2922307118 sameAs 2922307118 @default.
- W2922307118 citedByCount "16" @default.
- W2922307118 countsByYear W29223071182019 @default.
- W2922307118 countsByYear W29223071182020 @default.
- W2922307118 countsByYear W29223071182021 @default.
- W2922307118 countsByYear W29223071182022 @default.
- W2922307118 countsByYear W29223071182023 @default.
- W2922307118 crossrefType "journal-article" @default.
- W2922307118 hasAuthorship W2922307118A5023420926 @default.
- W2922307118 hasAuthorship W2922307118A5030589098 @default.
- W2922307118 hasAuthorship W2922307118A5041722756 @default.
- W2922307118 hasAuthorship W2922307118A5050831226 @default.
- W2922307118 hasConcept C127413603 @default.
- W2922307118 hasConcept C142724271 @default.
- W2922307118 hasConcept C144024400 @default.
- W2922307118 hasConcept C146978453 @default.
- W2922307118 hasConcept C149923435 @default.
- W2922307118 hasConcept C1549246 @default.
- W2922307118 hasConcept C154945302 @default.
- W2922307118 hasConcept C173163844 @default.
- W2922307118 hasConcept C18903297 @default.
- W2922307118 hasConcept C204323151 @default.
- W2922307118 hasConcept C205372480 @default.
- W2922307118 hasConcept C205649164 @default.
- W2922307118 hasConcept C25989453 @default.
- W2922307118 hasConcept C2776133958 @default.
- W2922307118 hasConcept C2908647359 @default.
- W2922307118 hasConcept C39432304 @default.
- W2922307118 hasConcept C41008148 @default.
- W2922307118 hasConcept C62649853 @default.
- W2922307118 hasConcept C71924100 @default.
- W2922307118 hasConcept C86803240 @default.
- W2922307118 hasConceptScore W2922307118C127413603 @default.
- W2922307118 hasConceptScore W2922307118C142724271 @default.
- W2922307118 hasConceptScore W2922307118C144024400 @default.
- W2922307118 hasConceptScore W2922307118C146978453 @default.
- W2922307118 hasConceptScore W2922307118C149923435 @default.
- W2922307118 hasConceptScore W2922307118C1549246 @default.
- W2922307118 hasConceptScore W2922307118C154945302 @default.
- W2922307118 hasConceptScore W2922307118C173163844 @default.
- W2922307118 hasConceptScore W2922307118C18903297 @default.
- W2922307118 hasConceptScore W2922307118C204323151 @default.
- W2922307118 hasConceptScore W2922307118C205372480 @default.
- W2922307118 hasConceptScore W2922307118C205649164 @default.
- W2922307118 hasConceptScore W2922307118C25989453 @default.
- W2922307118 hasConceptScore W2922307118C2776133958 @default.
- W2922307118 hasConceptScore W2922307118C2908647359 @default.
- W2922307118 hasConceptScore W2922307118C39432304 @default.
- W2922307118 hasConceptScore W2922307118C41008148 @default.