Matches in SemOpenAlex for { <https://semopenalex.org/work/W2922335905> ?p ?o ?g. }
Showing items 1 to 66 of
66
with 100 items per page.
- W2922335905 endingPage "402" @default.
- W2922335905 startingPage "377" @default.
- W2922335905 abstract "In this paper we construct and prove superintegrability of spin Calogero-Moser type systems on symplectic leaves of <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper K 1 minus upper T Superscript asterisk Baseline upper G slash upper K 2> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>K</mml:mi> <mml:mn>1</mml:mn> </mml:msub> <mml:mi class=MJX-variant mathvariant=normal>∖<!-- ∖ --></mml:mi> <mml:msup> <mml:mi>T</mml:mi> <mml:mo>∗<!-- ∗ --></mml:mo> </mml:msup> <mml:mi>G</mml:mi> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mo>/</mml:mo> </mml:mrow> <mml:msub> <mml:mi>K</mml:mi> <mml:mn>2</mml:mn> </mml:msub> </mml:mrow> <mml:annotation encoding=application/x-tex>K_1backslash T^*G/K_2</mml:annotation> </mml:semantics> </mml:math> </inline-formula> where <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper K 1 comma upper K 2 subset-of upper G> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>K</mml:mi> <mml:mn>1</mml:mn> </mml:msub> <mml:mo>,</mml:mo> <mml:mtext> </mml:mtext> <mml:msub> <mml:mi>K</mml:mi> <mml:mn>2</mml:mn> </mml:msub> <mml:mo>⊂<!-- ⊂ --></mml:mo> <mml:mi>G</mml:mi> </mml:mrow> <mml:annotation encoding=application/x-tex>K_1,space K_2subset G</mml:annotation> </mml:semantics> </mml:math> </inline-formula> are subgroups. We call them two-sided spin Calogero-Moser systems. One important type of such systems correspond to <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper K 1 equals upper K 2 equals upper K> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>K</mml:mi> <mml:mn>1</mml:mn> </mml:msub> <mml:mo>=</mml:mo> <mml:msub> <mml:mi>K</mml:mi> <mml:mn>2</mml:mn> </mml:msub> <mml:mo>=</mml:mo> <mml:mi>K</mml:mi> </mml:mrow> <mml:annotation encoding=application/x-tex>K_1=K_2=K</mml:annotation> </mml:semantics> </mml:math> </inline-formula> where <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper K> <mml:semantics> <mml:mi>K</mml:mi> <mml:annotation encoding=application/x-tex>K</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a subgroup of fixed points of Chevalley involution <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=theta colon upper G right-arrow upper G> <mml:semantics> <mml:mrow> <mml:mi>θ<!-- θ --></mml:mi> <mml:mo>:</mml:mo> <mml:mi>G</mml:mi> <mml:mo stretchy=false>→<!-- → --></mml:mo> <mml:mi>G</mml:mi> </mml:mrow> <mml:annotation encoding=application/x-tex>theta : Gto G</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. The other important series of examples come from pair <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper G subset-of upper G times upper G> <mml:semantics> <mml:mrow> <mml:mi>G</mml:mi> <mml:mo>⊂<!-- ⊂ --></mml:mo> <mml:mi>G</mml:mi> <mml:mo>×<!-- × --></mml:mo> <mml:mi>G</mml:mi> </mml:mrow> <mml:annotation encoding=application/x-tex>Gsubset Gtimes G</mml:annotation> </mml:semantics> </mml:math> </inline-formula> with the diagonal embedding. We explicitly describe examples of such systems corresponding to symplectic leaves of rank one when <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper G equals upper S upper L Subscript n> <mml:semantics> <mml:mrow> <mml:mi>G</mml:mi> <mml:mo>=</mml:mo> <mml:mi>S</mml:mi> <mml:msub> <mml:mi>L</mml:mi> <mml:mi>n</mml:mi> </mml:msub> </mml:mrow> <mml:annotation encoding=application/x-tex>G=SL_n</mml:annotation> </mml:semantics> </mml:math> </inline-formula>." @default.
- W2922335905 created "2019-03-22" @default.
- W2922335905 creator A5011211902 @default.
- W2922335905 date "2021-01-01" @default.
- W2922335905 modified "2023-10-18" @default.
- W2922335905 title "Spin Calogero-Moser models on symmetric spaces" @default.
- W2922335905 cites W1970766718 @default.
- W2922335905 cites W1972362863 @default.
- W2922335905 cites W2011023754 @default.
- W2922335905 cites W2017614423 @default.
- W2922335905 cites W2022966562 @default.
- W2922335905 cites W2052019459 @default.
- W2922335905 cites W2061167526 @default.
- W2922335905 cites W2067160930 @default.
- W2922335905 cites W2081021127 @default.
- W2922335905 cites W2093679574 @default.
- W2922335905 cites W2113055611 @default.
- W2922335905 cites W2963564816 @default.
- W2922335905 cites W2963672837 @default.
- W2922335905 cites W3005153432 @default.
- W2922335905 cites W3099770992 @default.
- W2922335905 cites W3101853012 @default.
- W2922335905 cites W3103052834 @default.
- W2922335905 cites W3104008428 @default.
- W2922335905 cites W3106128918 @default.
- W2922335905 cites W3144326749 @default.
- W2922335905 cites W4238447443 @default.
- W2922335905 cites W637154592 @default.
- W2922335905 cites W93301486 @default.
- W2922335905 doi "https://doi.org/10.1090/pspum/103.1/01840" @default.
- W2922335905 hasPublicationYear "2021" @default.
- W2922335905 type Work @default.
- W2922335905 sameAs 2922335905 @default.
- W2922335905 citedByCount "4" @default.
- W2922335905 countsByYear W29223359052019 @default.
- W2922335905 countsByYear W29223359052021 @default.
- W2922335905 countsByYear W29223359052023 @default.
- W2922335905 crossrefType "other" @default.
- W2922335905 hasAuthorship W2922335905A5011211902 @default.
- W2922335905 hasBestOaLocation W29223359052 @default.
- W2922335905 hasConcept C11413529 @default.
- W2922335905 hasConcept C154945302 @default.
- W2922335905 hasConcept C41008148 @default.
- W2922335905 hasConceptScore W2922335905C11413529 @default.
- W2922335905 hasConceptScore W2922335905C154945302 @default.
- W2922335905 hasConceptScore W2922335905C41008148 @default.
- W2922335905 hasLocation W29223359051 @default.
- W2922335905 hasLocation W29223359052 @default.
- W2922335905 hasOpenAccess W2922335905 @default.
- W2922335905 hasPrimaryLocation W29223359051 @default.
- W2922335905 hasRelatedWork W2051487156 @default.
- W2922335905 hasRelatedWork W2073681303 @default.
- W2922335905 hasRelatedWork W2317200988 @default.
- W2922335905 hasRelatedWork W2358668433 @default.
- W2922335905 hasRelatedWork W2376932109 @default.
- W2922335905 hasRelatedWork W2382290278 @default.
- W2922335905 hasRelatedWork W2386767533 @default.
- W2922335905 hasRelatedWork W2390279801 @default.
- W2922335905 hasRelatedWork W2748952813 @default.
- W2922335905 hasRelatedWork W2899084033 @default.
- W2922335905 isParatext "false" @default.
- W2922335905 isRetracted "false" @default.
- W2922335905 magId "2922335905" @default.
- W2922335905 workType "other" @default.