Matches in SemOpenAlex for { <https://semopenalex.org/work/W2922338032> ?p ?o ?g. }
- W2922338032 abstract "Abstract Tomato spotted wilt virus is a wide-spread plant disease in the world. It can threaten thousands of plants with a persistent and propagative manner. Early disease detection is expected to be able to control the disease spread, to facilitate management practice, and further to guarantee accompanying economic benefits. Hyperspectral imaging, a powerful remote sensing tool, has been widely applied in different science fields, especially in plant science domain. Rich spectral information makes disease detection possible before visible disease symptoms showing up. In the paper, a new hyperspectral analysis proximal sensing method based on generative adversarial nets (GAN) is proposed, named as outlier removal auxiliary classifier generative adversarial nets (OR-AC-GAN). It is an all-in-one method, which integrates the tasks of plant segmentation, spectrum classification and image classification. The model focuses on image pixels, which can effectively visualize potential plant disease positions, and keep experts’ attention on these diseased pixels. Meanwhile, this new model can improve the performances of classic spectrum band selection methods, including the maximum variance principle component analysis (MVPCA), fast density-peak-based clustering, and similarity-based unsupervised band selection. Selecting spectrum wavebands reasonably is an important preprocessing step in spectroscopy/hyperspectral analysis applications, which can reduce the computation time for potential in-field applications, affect the prediction results and make the hyperspectral analysis results explainable. In the experiment, the hyperspectral reflectance imaging system covers the spectral range from 395 nm to 1005 nm. The proprosed model makes use of 83 bands to do the analysis. The plant level classification accuracy gets 96.25% before visible symptoms shows up. The pixel prediction false positive rate in healthy plants gets as low as 1.47%. Combining the OR-AC-GAN with three existing band selection algorithms, the performance of these band selection models can be significantly improved. Among them, MVPCA can leverage only 8 spectrum bands to get the same plant level classification accuracy as OR-AC-GAN, and the pixel prediction false positive rate in healthy plants is 1.57%, which is also comparable to OR-AC-GAN. This new model can be potentially transferred to other plant diseases detection applications. Its property to boost the performance of existing band selection methods can also accelerate the in-field applications of hyperspectral imaging technology." @default.
- W2922338032 created "2019-03-22" @default.
- W2922338032 creator A5001181155 @default.
- W2922338032 creator A5018361664 @default.
- W2922338032 creator A5040015453 @default.
- W2922338032 creator A5050684783 @default.
- W2922338032 creator A5055364549 @default.
- W2922338032 creator A5057961127 @default.
- W2922338032 creator A5079125727 @default.
- W2922338032 date "2019-03-13" @default.
- W2922338032 modified "2023-10-16" @default.
- W2922338032 title "Early Detection of Tomato Spotted Wilt Virus by Hyperspectral Imaging and Outlier Removal Auxiliary Classifier Generative Adversarial Nets (OR-AC-GAN)" @default.
- W2922338032 cites W1932531222 @default.
- W2922338032 cites W1938887115 @default.
- W2922338032 cites W1968378357 @default.
- W2922338032 cites W1972703100 @default.
- W2922338032 cites W1998915466 @default.
- W2922338032 cites W2001141328 @default.
- W2922338032 cites W2004598447 @default.
- W2922338032 cites W2010633042 @default.
- W2922338032 cites W2011325105 @default.
- W2922338032 cites W2014408679 @default.
- W2922338032 cites W2019610851 @default.
- W2922338032 cites W2027140534 @default.
- W2922338032 cites W2027459748 @default.
- W2922338032 cites W2050861661 @default.
- W2922338032 cites W2058164434 @default.
- W2922338032 cites W2063259753 @default.
- W2922338032 cites W2067933363 @default.
- W2922338032 cites W2079842406 @default.
- W2922338032 cites W2080922998 @default.
- W2922338032 cites W2085624281 @default.
- W2922338032 cites W2109836508 @default.
- W2922338032 cites W2111920788 @default.
- W2922338032 cites W2141567889 @default.
- W2922338032 cites W2150990614 @default.
- W2922338032 cites W2151323162 @default.
- W2922338032 cites W2161943337 @default.
- W2922338032 cites W2165835468 @default.
- W2922338032 cites W2167435760 @default.
- W2922338032 cites W2177830478 @default.
- W2922338032 cites W2342412117 @default.
- W2922338032 cites W2479500547 @default.
- W2922338032 cites W2508058002 @default.
- W2922338032 cites W2564339002 @default.
- W2922338032 cites W2586532996 @default.
- W2922338032 cites W2588726396 @default.
- W2922338032 cites W2702736887 @default.
- W2922338032 cites W2757208835 @default.
- W2922338032 cites W2768038330 @default.
- W2922338032 cites W2770854636 @default.
- W2922338032 cites W2780615681 @default.
- W2922338032 cites W2782051899 @default.
- W2922338032 cites W2791006446 @default.
- W2922338032 cites W2797606508 @default.
- W2922338032 cites W2901326905 @default.
- W2922338032 cites W2919115771 @default.
- W2922338032 cites W2078815595 @default.
- W2922338032 doi "https://doi.org/10.1038/s41598-019-40066-y" @default.
- W2922338032 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6416251" @default.
- W2922338032 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30867450" @default.
- W2922338032 hasPublicationYear "2019" @default.
- W2922338032 type Work @default.
- W2922338032 sameAs 2922338032 @default.
- W2922338032 citedByCount "56" @default.
- W2922338032 countsByYear W29223380322019 @default.
- W2922338032 countsByYear W29223380322020 @default.
- W2922338032 countsByYear W29223380322021 @default.
- W2922338032 countsByYear W29223380322022 @default.
- W2922338032 countsByYear W29223380322023 @default.
- W2922338032 crossrefType "journal-article" @default.
- W2922338032 hasAuthorship W2922338032A5001181155 @default.
- W2922338032 hasAuthorship W2922338032A5018361664 @default.
- W2922338032 hasAuthorship W2922338032A5040015453 @default.
- W2922338032 hasAuthorship W2922338032A5050684783 @default.
- W2922338032 hasAuthorship W2922338032A5055364549 @default.
- W2922338032 hasAuthorship W2922338032A5057961127 @default.
- W2922338032 hasAuthorship W2922338032A5079125727 @default.
- W2922338032 hasBestOaLocation W29223380321 @default.
- W2922338032 hasConcept C153180895 @default.
- W2922338032 hasConcept C154945302 @default.
- W2922338032 hasConcept C159078339 @default.
- W2922338032 hasConcept C173163844 @default.
- W2922338032 hasConcept C34736171 @default.
- W2922338032 hasConcept C41008148 @default.
- W2922338032 hasConcept C739882 @default.
- W2922338032 hasConcept C95623464 @default.
- W2922338032 hasConceptScore W2922338032C153180895 @default.
- W2922338032 hasConceptScore W2922338032C154945302 @default.
- W2922338032 hasConceptScore W2922338032C159078339 @default.
- W2922338032 hasConceptScore W2922338032C173163844 @default.
- W2922338032 hasConceptScore W2922338032C34736171 @default.
- W2922338032 hasConceptScore W2922338032C41008148 @default.
- W2922338032 hasConceptScore W2922338032C739882 @default.
- W2922338032 hasConceptScore W2922338032C95623464 @default.
- W2922338032 hasIssue "1" @default.
- W2922338032 hasLocation W29223380321 @default.
- W2922338032 hasLocation W29223380322 @default.
- W2922338032 hasLocation W29223380323 @default.
- W2922338032 hasOpenAccess W2922338032 @default.