Matches in SemOpenAlex for { <https://semopenalex.org/work/W2922350069> ?p ?o ?g. }
Showing items 1 to 99 of
99
with 100 items per page.
- W2922350069 endingPage "33808" @default.
- W2922350069 startingPage "33795" @default.
- W2922350069 abstract "Image segmentation is typically used to locate objects and boundaries. It is essential in many clinical applications, such as the pathological diagnosis of hepatic diseases, surgical planning, and postoperative assessment. The segmentation task is hampered by fuzzy boundaries, complex backgrounds, and appearances of objects of interest, which vary considerably. The success of the procedure is still highly dependent on the operator’s skills and the level of hand–eye coordination. Thus, this paper was strongly motivated by the necessity to obtain an early and accurate diagnosis of a detected object in medical images. In this paper, we propose a new polyp segmentation method based on the architecture of a multiple deep encoder–decoder networks combination called CDED-net. The architecture can not only hold multi-level contextual information by extracting discriminative features at different effective fields-of-view and multiple image scales but also learn rich information features from missing pixels in the training phase. Moreover, the network is also able to capture object boundaries by using multiscale effective decoders. We also propose a novel strategy for improving the method’s segmentation performance based on a combination of a boundary-emphasization data augmentation method and a new effective dice loss function. The goal of this strategy is to make our deep learning network available with poorly defined object boundaries, which are caused by the non-specular transition zone between the background and foreground regions. To provide a general view of the proposed method, our network was trained and evaluated on three well-known polyp datasets, CVC-ColonDB, CVC-ClinicDB, and ETIS-Larib PolypDB. Furthermore, we also used the Pedro Hispano Hospital (PH2), ISBI 2016 skin lesion segmentation dataset, and CT healthy abdominal organ segmentation dataset to depict our network’s ability. Our results reveal that the CDED-net significantly surpasses the state-of-the-art methods." @default.
- W2922350069 created "2019-03-22" @default.
- W2922350069 creator A5015157320 @default.
- W2922350069 creator A5067373420 @default.
- W2922350069 date "2019-01-01" @default.
- W2922350069 modified "2023-10-16" @default.
- W2922350069 title "Robust Boundary Segmentation in Medical Images Using a Consecutive Deep Encoder-Decoder Network" @default.
- W2922350069 cites W1745334888 @default.
- W2922350069 cites W1903029394 @default.
- W2922350069 cites W1918837316 @default.
- W2922350069 cites W1963830612 @default.
- W2922350069 cites W1975258254 @default.
- W2922350069 cites W2008359794 @default.
- W2922350069 cites W2021088830 @default.
- W2922350069 cites W2031489346 @default.
- W2922350069 cites W2034269173 @default.
- W2922350069 cites W2097117768 @default.
- W2922350069 cites W2104276184 @default.
- W2922350069 cites W2116268975 @default.
- W2922350069 cites W2153431772 @default.
- W2922350069 cites W2156677306 @default.
- W2922350069 cites W2161113826 @default.
- W2922350069 cites W2357815549 @default.
- W2922350069 cites W2437694626 @default.
- W2922350069 cites W2554204699 @default.
- W2922350069 cites W2586952804 @default.
- W2922350069 cites W2592929672 @default.
- W2922350069 cites W2593883319 @default.
- W2922350069 cites W2623166637 @default.
- W2922350069 cites W2681379703 @default.
- W2922350069 cites W2793703004 @default.
- W2922350069 cites W2803575519 @default.
- W2922350069 cites W2809598685 @default.
- W2922350069 cites W2885668531 @default.
- W2922350069 cites W2890068671 @default.
- W2922350069 cites W2905659930 @default.
- W2922350069 cites W2962927567 @default.
- W2922350069 cites W2963108767 @default.
- W2922350069 cites W2963803174 @default.
- W2922350069 cites W2964309882 @default.
- W2922350069 cites W4797066 @default.
- W2922350069 doi "https://doi.org/10.1109/access.2019.2904094" @default.
- W2922350069 hasPublicationYear "2019" @default.
- W2922350069 type Work @default.
- W2922350069 sameAs 2922350069 @default.
- W2922350069 citedByCount "36" @default.
- W2922350069 countsByYear W29223500692019 @default.
- W2922350069 countsByYear W29223500692020 @default.
- W2922350069 countsByYear W29223500692021 @default.
- W2922350069 countsByYear W29223500692022 @default.
- W2922350069 countsByYear W29223500692023 @default.
- W2922350069 crossrefType "journal-article" @default.
- W2922350069 hasAuthorship W2922350069A5015157320 @default.
- W2922350069 hasAuthorship W2922350069A5067373420 @default.
- W2922350069 hasBestOaLocation W29223500691 @default.
- W2922350069 hasConcept C111919701 @default.
- W2922350069 hasConcept C118505674 @default.
- W2922350069 hasConcept C124504099 @default.
- W2922350069 hasConcept C134306372 @default.
- W2922350069 hasConcept C153180895 @default.
- W2922350069 hasConcept C154945302 @default.
- W2922350069 hasConcept C31601959 @default.
- W2922350069 hasConcept C31972630 @default.
- W2922350069 hasConcept C33923547 @default.
- W2922350069 hasConcept C41008148 @default.
- W2922350069 hasConcept C62354387 @default.
- W2922350069 hasConcept C89600930 @default.
- W2922350069 hasConceptScore W2922350069C111919701 @default.
- W2922350069 hasConceptScore W2922350069C118505674 @default.
- W2922350069 hasConceptScore W2922350069C124504099 @default.
- W2922350069 hasConceptScore W2922350069C134306372 @default.
- W2922350069 hasConceptScore W2922350069C153180895 @default.
- W2922350069 hasConceptScore W2922350069C154945302 @default.
- W2922350069 hasConceptScore W2922350069C31601959 @default.
- W2922350069 hasConceptScore W2922350069C31972630 @default.
- W2922350069 hasConceptScore W2922350069C33923547 @default.
- W2922350069 hasConceptScore W2922350069C41008148 @default.
- W2922350069 hasConceptScore W2922350069C62354387 @default.
- W2922350069 hasConceptScore W2922350069C89600930 @default.
- W2922350069 hasLocation W29223500691 @default.
- W2922350069 hasOpenAccess W2922350069 @default.
- W2922350069 hasPrimaryLocation W29223500691 @default.
- W2922350069 hasRelatedWork W1669643531 @default.
- W2922350069 hasRelatedWork W1700740617 @default.
- W2922350069 hasRelatedWork W1721780360 @default.
- W2922350069 hasRelatedWork W2008268297 @default.
- W2922350069 hasRelatedWork W2110230079 @default.
- W2922350069 hasRelatedWork W2117664411 @default.
- W2922350069 hasRelatedWork W2117933325 @default.
- W2922350069 hasRelatedWork W2122581818 @default.
- W2922350069 hasRelatedWork W2159066190 @default.
- W2922350069 hasRelatedWork W2739874619 @default.
- W2922350069 hasVolume "7" @default.
- W2922350069 isParatext "false" @default.
- W2922350069 isRetracted "false" @default.
- W2922350069 magId "2922350069" @default.
- W2922350069 workType "article" @default.