Matches in SemOpenAlex for { <https://semopenalex.org/work/W2922350238> ?p ?o ?g. }
Showing items 1 to 95 of
95
with 100 items per page.
- W2922350238 endingPage "499" @default.
- W2922350238 startingPage "473" @default.
- W2922350238 abstract "Purpose Lean implementation is a strategic decision. The capacity of organisation to be “Lean” can be identified before lean implementation by assessing leanness of an organisation. This study aims to attempt developing a holistic leanness assessment tool for assessing organisational leanness. Design/methodology/approach A neuro-fuzzy leanness assessment model for assessing the leanness of a manufacturing system is presented. The model is validated academically and industrially by conducting a case study. Findings Neuro-fuzzy hybridisation helped assess the leanness accurately. Fuzzy logic helped to perform the leanness assessment more realistically by accounting ambiguity and vagueness in organisational functioning and decision-making processes. Neural network increased the learning capacity of assessment model and increased the accuracy of leanness index. Research limitations/implications The industrial case study in the paper shows the results in telecom equipment manufacturing industry. This may not represent entire manufacturing sector. The generic nature of the model developed in this research ensures its wide applicability. Practical implications The neuro-fuzzy hybrid model for assessing leanness helps to identify the potential of an organisation to become “Lean”. The organisational leanness index developed by the study helps to monitor the effectiveness and impact of lean implementation programmes. Originality/value The leanness assessment models available in literature lack depth and coverage of leanness parameters. The model developed in this research assesses leanness of an organisation by accounting for leanness aspects of inventory management, industrial scheduling, organisational flexibility, ergonomics, product, process, management, workforce, supplier relationship and customer relationship with the help of neuro-fuzzy hybrid modelling." @default.
- W2922350238 created "2019-03-22" @default.
- W2922350238 creator A5032268478 @default.
- W2922350238 creator A5062968787 @default.
- W2922350238 date "2019-03-04" @default.
- W2922350238 modified "2023-10-16" @default.
- W2922350238 title "A neuro-fuzzy hybrid model for assessing leanness of manufacturing systems" @default.
- W2922350238 cites W1590878032 @default.
- W2922350238 cites W1976418944 @default.
- W2922350238 cites W1981569342 @default.
- W2922350238 cites W1987325240 @default.
- W2922350238 cites W1991145571 @default.
- W2922350238 cites W1994073364 @default.
- W2922350238 cites W2003981513 @default.
- W2922350238 cites W2004633647 @default.
- W2922350238 cites W2009413536 @default.
- W2922350238 cites W2018962727 @default.
- W2922350238 cites W2019007602 @default.
- W2922350238 cites W2020360355 @default.
- W2922350238 cites W2026467336 @default.
- W2922350238 cites W2029683934 @default.
- W2922350238 cites W2045472259 @default.
- W2922350238 cites W2050343006 @default.
- W2922350238 cites W2071159831 @default.
- W2922350238 cites W2072788456 @default.
- W2922350238 cites W2074613969 @default.
- W2922350238 cites W2077513036 @default.
- W2922350238 cites W2078950403 @default.
- W2922350238 cites W2103296186 @default.
- W2922350238 cites W2104070437 @default.
- W2922350238 cites W2127160769 @default.
- W2922350238 cites W2133413574 @default.
- W2922350238 cites W2141614013 @default.
- W2922350238 cites W2144404614 @default.
- W2922350238 cites W2169950385 @default.
- W2922350238 cites W2192846650 @default.
- W2922350238 cites W2336082409 @default.
- W2922350238 cites W2400432161 @default.
- W2922350238 cites W2507868440 @default.
- W2922350238 cites W2543231468 @default.
- W2922350238 cites W2549459998 @default.
- W2922350238 cites W2618210009 @default.
- W2922350238 cites W2735579404 @default.
- W2922350238 cites W2737657685 @default.
- W2922350238 cites W4211007335 @default.
- W2922350238 cites W4230846333 @default.
- W2922350238 doi "https://doi.org/10.1108/ijlss-05-2017-0040" @default.
- W2922350238 hasPublicationYear "2019" @default.
- W2922350238 type Work @default.
- W2922350238 sameAs 2922350238 @default.
- W2922350238 citedByCount "11" @default.
- W2922350238 countsByYear W29223502382020 @default.
- W2922350238 countsByYear W29223502382021 @default.
- W2922350238 countsByYear W29223502382022 @default.
- W2922350238 countsByYear W29223502382023 @default.
- W2922350238 crossrefType "journal-article" @default.
- W2922350238 hasAuthorship W2922350238A5032268478 @default.
- W2922350238 hasAuthorship W2922350238A5062968787 @default.
- W2922350238 hasConcept C117671659 @default.
- W2922350238 hasConcept C127413603 @default.
- W2922350238 hasConcept C137335462 @default.
- W2922350238 hasConcept C154945302 @default.
- W2922350238 hasConcept C195094911 @default.
- W2922350238 hasConcept C41008148 @default.
- W2922350238 hasConcept C58166 @default.
- W2922350238 hasConcept C82740854 @default.
- W2922350238 hasConceptScore W2922350238C117671659 @default.
- W2922350238 hasConceptScore W2922350238C127413603 @default.
- W2922350238 hasConceptScore W2922350238C137335462 @default.
- W2922350238 hasConceptScore W2922350238C154945302 @default.
- W2922350238 hasConceptScore W2922350238C195094911 @default.
- W2922350238 hasConceptScore W2922350238C41008148 @default.
- W2922350238 hasConceptScore W2922350238C58166 @default.
- W2922350238 hasConceptScore W2922350238C82740854 @default.
- W2922350238 hasIssue "1" @default.
- W2922350238 hasLocation W29223502381 @default.
- W2922350238 hasOpenAccess W2922350238 @default.
- W2922350238 hasPrimaryLocation W29223502381 @default.
- W2922350238 hasRelatedWork W137457883 @default.
- W2922350238 hasRelatedWork W2065492989 @default.
- W2922350238 hasRelatedWork W2093540103 @default.
- W2922350238 hasRelatedWork W2127973070 @default.
- W2922350238 hasRelatedWork W2128723725 @default.
- W2922350238 hasRelatedWork W2186682926 @default.
- W2922350238 hasRelatedWork W2778648002 @default.
- W2922350238 hasRelatedWork W2910516209 @default.
- W2922350238 hasRelatedWork W380617600 @default.
- W2922350238 hasRelatedWork W4312335616 @default.
- W2922350238 hasVolume "10" @default.
- W2922350238 isParatext "false" @default.
- W2922350238 isRetracted "false" @default.
- W2922350238 magId "2922350238" @default.
- W2922350238 workType "article" @default.