Matches in SemOpenAlex for { <https://semopenalex.org/work/W2922351261> ?p ?o ?g. }
- W2922351261 endingPage "38" @default.
- W2922351261 startingPage "38" @default.
- W2922351261 abstract "The spreading of small liquid drops over thin and thick porous layers (dry or saturated with the same liquid) is discussed in the case of both complete wetting (silicone oils of different viscosities over nitrocellulose membranes and blood over a filter paper) and partial wetting (aqueous SDS (Sodium dodecyl sulfate) solutions of different concentrations and blood over partially wetted substrates). Filter paper and nitrocellulose membranes of different porosity and different average pore size were used as a model of thin porous layers, sponges, glass and metal filters were used as a model of thick porous substrates. Spreading of both Newtonian and non-Newtonian liquid are considered below. In the case of complete wetting, two spreading regimes were found (i) the fast spreading regime, when imbibition is not important and (ii) the second slow regime when imbibition dominates. As a result of these two competing processes, the radius of the drop goes through a maximum value over time. A system of two differential equations was derived in the case of complete wetting for both Newtonian and non-Newtonian liquids to describe the evolution with time of radii of both the drop base and the wetted region inside the porous layer. The deduced system of differential equations does not include any fitting parameter. Experiments were carried out by the spreading of silicone oil drops over various dry microfiltration membranes (permeable in both normal and tangential directions) and blood over dry filter paper. The time evolution of the radii of both the drop base and the wetted region inside the porous layer were monitored. All experimental data fell on two universal curves if appropriate scales are used with a plot of the dimensionless radii of the drop base and of the wetted region inside the porous layer on dimensionless time. The predicted theoretical relationships are two universal curves accounting quite satisfactorily for the experimental data. According to the theory prediction, (i) the dynamic contact angle dependence on the same dimensionless time as before should be a universal function and (ii) the dynamic contact angle should change rapidly over an initial short stage of spreading and should remain a constant value over the duration of the rest of the spreading process. The constancy of the contact angle on this stage has nothing to do with hysteresis of the contact angle: there is no hysteresis in the system under investigation in the case of complete wetting. These conclusions again are in good agreement with experimental observations in the case of complete wetting for both Newtonian and non-Newtonian liquids. Addition of surfactant to aqueous solutions, as expected, improve spreading over porous substrates and, in some cases, results in switching from partial to complete wetting. It was shown that for the spreading of surfactant solutions on thick porous substrates there is a minimum contact angle after which the droplet rapidly absorbs into the substrate. Unfortunately, a theory of spreading/imbibition over thick porous substrates is still to be developed. However, it was shown that the dimensionless time dependences of both contact angle and spreading radius of the droplet on thick porous material fall on to a universal curve in the case of complete wetting." @default.
- W2922351261 created "2019-03-22" @default.
- W2922351261 creator A5009699283 @default.
- W2922351261 creator A5070998741 @default.
- W2922351261 creator A5089812858 @default.
- W2922351261 date "2019-03-15" @default.
- W2922351261 modified "2023-10-17" @default.
- W2922351261 title "Kinetics of Spreading over Porous Substrates" @default.
- W2922351261 cites W1964856252 @default.
- W2922351261 cites W1970826848 @default.
- W2922351261 cites W1971723555 @default.
- W2922351261 cites W1979411124 @default.
- W2922351261 cites W1985249367 @default.
- W2922351261 cites W1988301699 @default.
- W2922351261 cites W2001300765 @default.
- W2922351261 cites W2007501521 @default.
- W2922351261 cites W2010364254 @default.
- W2922351261 cites W2010369500 @default.
- W2922351261 cites W2016301187 @default.
- W2922351261 cites W2017005312 @default.
- W2922351261 cites W2021542483 @default.
- W2922351261 cites W2024285307 @default.
- W2922351261 cites W2030982566 @default.
- W2922351261 cites W2037928002 @default.
- W2922351261 cites W2039159829 @default.
- W2922351261 cites W2046426574 @default.
- W2922351261 cites W2047733909 @default.
- W2922351261 cites W2047770053 @default.
- W2922351261 cites W2050699210 @default.
- W2922351261 cites W2058046601 @default.
- W2922351261 cites W2059652632 @default.
- W2922351261 cites W2066474456 @default.
- W2922351261 cites W2066599540 @default.
- W2922351261 cites W2071296910 @default.
- W2922351261 cites W2081116511 @default.
- W2922351261 cites W2087780556 @default.
- W2922351261 cites W2109136371 @default.
- W2922351261 cites W2110938999 @default.
- W2922351261 cites W2122933123 @default.
- W2922351261 cites W2128976865 @default.
- W2922351261 cites W2153469610 @default.
- W2922351261 cites W2155788949 @default.
- W2922351261 cites W2322461452 @default.
- W2922351261 cites W2775949091 @default.
- W2922351261 cites W2911045099 @default.
- W2922351261 cites W3099088279 @default.
- W2922351261 cites W4253093266 @default.
- W2922351261 doi "https://doi.org/10.3390/colloids3010038" @default.
- W2922351261 hasPublicationYear "2019" @default.
- W2922351261 type Work @default.
- W2922351261 sameAs 2922351261 @default.
- W2922351261 citedByCount "7" @default.
- W2922351261 countsByYear W29223512612020 @default.
- W2922351261 countsByYear W29223512612021 @default.
- W2922351261 countsByYear W29223512612022 @default.
- W2922351261 crossrefType "journal-article" @default.
- W2922351261 hasAuthorship W2922351261A5009699283 @default.
- W2922351261 hasAuthorship W2922351261A5070998741 @default.
- W2922351261 hasAuthorship W2922351261A5089812858 @default.
- W2922351261 hasBestOaLocation W29223512611 @default.
- W2922351261 hasConcept C100701293 @default.
- W2922351261 hasConcept C105569014 @default.
- W2922351261 hasConcept C121332964 @default.
- W2922351261 hasConcept C127413603 @default.
- W2922351261 hasConcept C134514944 @default.
- W2922351261 hasConcept C159985019 @default.
- W2922351261 hasConcept C185592680 @default.
- W2922351261 hasConcept C192562407 @default.
- W2922351261 hasConcept C196806460 @default.
- W2922351261 hasConcept C2775952280 @default.
- W2922351261 hasConcept C2778123984 @default.
- W2922351261 hasConcept C2778409621 @default.
- W2922351261 hasConcept C2781345722 @default.
- W2922351261 hasConcept C294558 @default.
- W2922351261 hasConcept C41008148 @default.
- W2922351261 hasConcept C41625074 @default.
- W2922351261 hasConcept C42360764 @default.
- W2922351261 hasConcept C43617362 @default.
- W2922351261 hasConcept C55493867 @default.
- W2922351261 hasConcept C59822182 @default.
- W2922351261 hasConcept C6648577 @default.
- W2922351261 hasConcept C76155785 @default.
- W2922351261 hasConcept C86803240 @default.
- W2922351261 hasConcept C97355855 @default.
- W2922351261 hasConceptScore W2922351261C100701293 @default.
- W2922351261 hasConceptScore W2922351261C105569014 @default.
- W2922351261 hasConceptScore W2922351261C121332964 @default.
- W2922351261 hasConceptScore W2922351261C127413603 @default.
- W2922351261 hasConceptScore W2922351261C134514944 @default.
- W2922351261 hasConceptScore W2922351261C159985019 @default.
- W2922351261 hasConceptScore W2922351261C185592680 @default.
- W2922351261 hasConceptScore W2922351261C192562407 @default.
- W2922351261 hasConceptScore W2922351261C196806460 @default.
- W2922351261 hasConceptScore W2922351261C2775952280 @default.
- W2922351261 hasConceptScore W2922351261C2778123984 @default.
- W2922351261 hasConceptScore W2922351261C2778409621 @default.
- W2922351261 hasConceptScore W2922351261C2781345722 @default.
- W2922351261 hasConceptScore W2922351261C294558 @default.