Matches in SemOpenAlex for { <https://semopenalex.org/work/W2922358462> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W2922358462 endingPage "66" @default.
- W2922358462 startingPage "39" @default.
- W2922358462 abstract "Intelligent systems are capable of doing tasks on their own with minimal or no human intervention. With the advent of big data and IoT, these intelligence systems have made their ways into most industries and homes. With its recent advancements, deep learning has created a niche in the technology space and is being actively used in big data and IoT systems globally. With the wider adoption, deep learning models unfortunately have become susceptible to attacks. Research has shown that many state-of-the-art accurate models can be vulnerable to attacks by well-crafted adversarial examples. This chapter aims to provide concise, in-depth understanding of attacks and defense of deep learning models. The chapter first presents the key architectures and application domains of deep learning and their vulnerabilities. Next, it illustrates the prominent adversarial examples, including the algorithms and techniques used to generate these attacks. Finally, it describes challenges and mechanisms to counter these attacks, and suggests future research directions." @default.
- W2922358462 created "2019-03-22" @default.
- W2922358462 creator A5021884742 @default.
- W2922358462 creator A5044236049 @default.
- W2922358462 date "2019-01-01" @default.
- W2922358462 modified "2023-09-25" @default.
- W2922358462 title "Adversarial Attacks and Defense on Deep Learning Models for Big Data and IoT" @default.
- W2922358462 cites W2047237187 @default.
- W2922358462 cites W2058580716 @default.
- W2922358462 cites W2064675550 @default.
- W2922358462 cites W2069143585 @default.
- W2922358462 cites W2118023920 @default.
- W2922358462 cites W2125908420 @default.
- W2922358462 cites W2142889610 @default.
- W2922358462 cites W2144906988 @default.
- W2922358462 cites W2155893237 @default.
- W2922358462 cites W2296452361 @default.
- W2922358462 cites W2399941526 @default.
- W2922358462 cites W2492578998 @default.
- W2922358462 cites W2535873859 @default.
- W2922358462 cites W2536626143 @default.
- W2922358462 cites W2574797807 @default.
- W2922358462 cites W2603766943 @default.
- W2922358462 cites W2604505099 @default.
- W2922358462 cites W2611576673 @default.
- W2922358462 cites W2616028256 @default.
- W2922358462 cites W2618043096 @default.
- W2922358462 cites W2746600820 @default.
- W2922358462 cites W2963173190 @default.
- W2922358462 cites W2963564844 @default.
- W2922358462 cites W2963857521 @default.
- W2922358462 cites W2963969878 @default.
- W2922358462 cites W2964301649 @default.
- W2922358462 cites W2964350391 @default.
- W2922358462 doi "https://doi.org/10.4018/978-1-5225-8407-0.ch003" @default.
- W2922358462 hasPublicationYear "2019" @default.
- W2922358462 type Work @default.
- W2922358462 sameAs 2922358462 @default.
- W2922358462 citedByCount "1" @default.
- W2922358462 countsByYear W29223584622020 @default.
- W2922358462 crossrefType "book-chapter" @default.
- W2922358462 hasAuthorship W2922358462A5021884742 @default.
- W2922358462 hasAuthorship W2922358462A5044236049 @default.
- W2922358462 hasConcept C108583219 @default.
- W2922358462 hasConcept C124101348 @default.
- W2922358462 hasConcept C154945302 @default.
- W2922358462 hasConcept C2522767166 @default.
- W2922358462 hasConcept C26517878 @default.
- W2922358462 hasConcept C37736160 @default.
- W2922358462 hasConcept C38652104 @default.
- W2922358462 hasConcept C41008148 @default.
- W2922358462 hasConcept C75684735 @default.
- W2922358462 hasConcept C81860439 @default.
- W2922358462 hasConceptScore W2922358462C108583219 @default.
- W2922358462 hasConceptScore W2922358462C124101348 @default.
- W2922358462 hasConceptScore W2922358462C154945302 @default.
- W2922358462 hasConceptScore W2922358462C2522767166 @default.
- W2922358462 hasConceptScore W2922358462C26517878 @default.
- W2922358462 hasConceptScore W2922358462C37736160 @default.
- W2922358462 hasConceptScore W2922358462C38652104 @default.
- W2922358462 hasConceptScore W2922358462C41008148 @default.
- W2922358462 hasConceptScore W2922358462C75684735 @default.
- W2922358462 hasConceptScore W2922358462C81860439 @default.
- W2922358462 hasLocation W29223584621 @default.
- W2922358462 hasOpenAccess W2922358462 @default.
- W2922358462 hasPrimaryLocation W29223584621 @default.
- W2922358462 hasRelatedWork W2520046485 @default.
- W2922358462 hasRelatedWork W2916736282 @default.
- W2922358462 hasRelatedWork W2995755792 @default.
- W2922358462 hasRelatedWork W3013509985 @default.
- W2922358462 hasRelatedWork W3014300295 @default.
- W2922358462 hasRelatedWork W3198084416 @default.
- W2922358462 hasRelatedWork W3209328123 @default.
- W2922358462 hasRelatedWork W4213286019 @default.
- W2922358462 hasRelatedWork W4293226363 @default.
- W2922358462 hasRelatedWork W4320068940 @default.
- W2922358462 isParatext "false" @default.
- W2922358462 isRetracted "false" @default.
- W2922358462 magId "2922358462" @default.
- W2922358462 workType "book-chapter" @default.