Matches in SemOpenAlex for { <https://semopenalex.org/work/W2922361411> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W2922361411 endingPage "61" @default.
- W2922361411 startingPage "54" @default.
- W2922361411 abstract "Scratching is a main behavioral response accompanied by acute and chronic itch conditions, and has been quantified as an objective correlate to assess itch in studies using laboratory animals. Scratching has been counted mostly by human annotators, which is a time-consuming and laborious process. It has been attempted to develop automated scoring methods using various strategies, but they often require specialized equipment, costly software, or implantation of device which may disturb animal behaviors. To complement limitations of those methods, we have adapted machine learning-based strategy to develop a novel automated and real-time method detecting mouse scratching from experimental movies captured using monochrome cameras such as a webcam. Scratching is identified by characteristic changes in pixels, body position, and body size by frame as well as the size of body. To build a training model, a novel two-step J48 decision tree-inducing algorithm along with a C4.5 post-pruning algorithm was applied to three 30-min video recordings in which a mouse exhibits scratching following an intradermal injection of a pruritogen, and the resultant frames were then used for the next round of training. The trained method exhibited, on average, a sensitivity and specificity of 95.19% and 92.96%, respectively, in a performance test with five new recordings. This result suggests that it can be used as a non-invasive, automated and objective tool to measure mouse scratching from video recordings captured in general experimental settings, permitting rapid and accurate analysis of scratching for preclinical studies and high throughput drug screening." @default.
- W2922361411 created "2019-03-22" @default.
- W2922361411 creator A5000636244 @default.
- W2922361411 creator A5012614127 @default.
- W2922361411 creator A5024030072 @default.
- W2922361411 creator A5057001702 @default.
- W2922361411 creator A5068373146 @default.
- W2922361411 creator A5087880937 @default.
- W2922361411 date "2019-02-28" @default.
- W2922361411 modified "2023-10-16" @default.
- W2922361411 title "Machine-Learning Based Automatic and Real-time Detection of Mouse Scratching Behaviors" @default.
- W2922361411 cites W1980331248 @default.
- W2922361411 cites W2003143648 @default.
- W2922361411 cites W2013932716 @default.
- W2922361411 cites W2084206921 @default.
- W2922361411 cites W2118193002 @default.
- W2922361411 cites W2147059908 @default.
- W2922361411 cites W2215508861 @default.
- W2922361411 cites W2507750318 @default.
- W2922361411 cites W2626571507 @default.
- W2922361411 cites W2726662718 @default.
- W2922361411 cites W2799273224 @default.
- W2922361411 doi "https://doi.org/10.5607/en.2019.28.1.54" @default.
- W2922361411 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6401551" @default.
- W2922361411 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30853824" @default.
- W2922361411 hasPublicationYear "2019" @default.
- W2922361411 type Work @default.
- W2922361411 sameAs 2922361411 @default.
- W2922361411 citedByCount "6" @default.
- W2922361411 countsByYear W29223614112019 @default.
- W2922361411 countsByYear W29223614112021 @default.
- W2922361411 countsByYear W29223614112022 @default.
- W2922361411 crossrefType "journal-article" @default.
- W2922361411 hasAuthorship W2922361411A5000636244 @default.
- W2922361411 hasAuthorship W2922361411A5012614127 @default.
- W2922361411 hasAuthorship W2922361411A5024030072 @default.
- W2922361411 hasAuthorship W2922361411A5057001702 @default.
- W2922361411 hasAuthorship W2922361411A5068373146 @default.
- W2922361411 hasAuthorship W2922361411A5087880937 @default.
- W2922361411 hasBestOaLocation W29223614111 @default.
- W2922361411 hasConcept C119857082 @default.
- W2922361411 hasConcept C121332964 @default.
- W2922361411 hasConcept C154945302 @default.
- W2922361411 hasConcept C24890656 @default.
- W2922361411 hasConcept C2780196728 @default.
- W2922361411 hasConcept C31972630 @default.
- W2922361411 hasConcept C41008148 @default.
- W2922361411 hasConceptScore W2922361411C119857082 @default.
- W2922361411 hasConceptScore W2922361411C121332964 @default.
- W2922361411 hasConceptScore W2922361411C154945302 @default.
- W2922361411 hasConceptScore W2922361411C24890656 @default.
- W2922361411 hasConceptScore W2922361411C2780196728 @default.
- W2922361411 hasConceptScore W2922361411C31972630 @default.
- W2922361411 hasConceptScore W2922361411C41008148 @default.
- W2922361411 hasFunder F4320321367 @default.
- W2922361411 hasFunder F4320322120 @default.
- W2922361411 hasIssue "1" @default.
- W2922361411 hasLocation W29223614111 @default.
- W2922361411 hasLocation W29223614112 @default.
- W2922361411 hasLocation W29223614113 @default.
- W2922361411 hasLocation W29223614114 @default.
- W2922361411 hasOpenAccess W2922361411 @default.
- W2922361411 hasPrimaryLocation W29223614111 @default.
- W2922361411 hasRelatedWork W1891287906 @default.
- W2922361411 hasRelatedWork W1969923398 @default.
- W2922361411 hasRelatedWork W2036807459 @default.
- W2922361411 hasRelatedWork W2058170566 @default.
- W2922361411 hasRelatedWork W2229312674 @default.
- W2922361411 hasRelatedWork W2755342338 @default.
- W2922361411 hasRelatedWork W2772917594 @default.
- W2922361411 hasRelatedWork W2961085424 @default.
- W2922361411 hasRelatedWork W3116076068 @default.
- W2922361411 hasRelatedWork W4306674287 @default.
- W2922361411 hasVolume "28" @default.
- W2922361411 isParatext "false" @default.
- W2922361411 isRetracted "false" @default.
- W2922361411 magId "2922361411" @default.
- W2922361411 workType "article" @default.