Matches in SemOpenAlex for { <https://semopenalex.org/work/W2922361723> ?p ?o ?g. }
- W2922361723 endingPage "638" @default.
- W2922361723 startingPage "638" @default.
- W2922361723 abstract "Landslides are typically triggered by earthquakes or rainfall occasionally a rainfall event followed by an earthquake or vice versa. Yet, most of the works presented in the past decade have been largely focused at the single event-susceptibility model. Such type of modeling is found insufficient in places where the triggering mechanism involves both factors such as one found in the Chuetsu region, Japan. Generally, a single event model provides only limited enlightenment of landslide spatial distribution and thus understate the potential combination-effect interrelation of earthquakes- and rainfall-triggered landslides. This study explores the both-effect of landslides triggered by Chuetsu-Niigata earthquake followed by a heavy rainfall event through examining multiple traditional statistical models and data mining for understanding the coupling effects. This paper aims to compare the abilities of the statistical probabilistic likelihood-frequency ratio (PLFR) model, information value (InV) method, certainty factors (CF), artificial neural network (ANN) and ensemble support vector machine (SVM) for the landslide susceptibility mapping (LSM) using high-resolution-light detection and ranging digital elevation model (LiDAR DEM). Firstly, the landslide inventory map including 8459 landslide polygons was compiled from multiple aerial photographs and satellite imageries. These datasets were then randomly split into two parts: 70% landslide polygons (5921) for training model and the remaining polygons for validation (2538). Next, seven causative factors were classified into three categories namely topographic factors, hydrological factors and geological factors. We then identified the associations between landslide occurrence and causative factors to produce LSM. Finally, the accuracies of five models were validated by the area under curves (AUC) method. The AUC values of five models vary from 0.77 to 0.87. Regarding the capability of performance, the proposed SVM is promising for constructing the regional landslide-prone potential areas using both types of landslides. Additionally, the result of our LSM can be applied for similar areas which have been experiencing both rainfall-earthquake landslides." @default.
- W2922361723 created "2019-03-22" @default.
- W2922361723 creator A5000729733 @default.
- W2922361723 creator A5029814958 @default.
- W2922361723 creator A5038893210 @default.
- W2922361723 creator A5045437724 @default.
- W2922361723 creator A5071615222 @default.
- W2922361723 creator A5076352077 @default.
- W2922361723 creator A5077243121 @default.
- W2922361723 creator A5081665504 @default.
- W2922361723 date "2019-03-15" @default.
- W2922361723 modified "2023-10-02" @default.
- W2922361723 title "Evaluating GIS-Based Multiple Statistical Models and Data Mining for Earthquake and Rainfall-Induced Landslide Susceptibility Using the LiDAR DEM" @default.
- W2922361723 cites W1003766845 @default.
- W2922361723 cites W1483065104 @default.
- W2922361723 cites W1970160734 @default.
- W2922361723 cites W1974106927 @default.
- W2922361723 cites W1978905539 @default.
- W2922361723 cites W1990748933 @default.
- W2922361723 cites W1993025283 @default.
- W2922361723 cites W1995654265 @default.
- W2922361723 cites W1997862882 @default.
- W2922361723 cites W2003381260 @default.
- W2922361723 cites W2010981626 @default.
- W2922361723 cites W2012103907 @default.
- W2922361723 cites W2012118327 @default.
- W2922361723 cites W2012223612 @default.
- W2922361723 cites W2016784021 @default.
- W2922361723 cites W2017458088 @default.
- W2922361723 cites W2027575677 @default.
- W2922361723 cites W2028124403 @default.
- W2922361723 cites W2042229599 @default.
- W2922361723 cites W2045076638 @default.
- W2922361723 cites W2046048043 @default.
- W2922361723 cites W2047195451 @default.
- W2922361723 cites W2050599078 @default.
- W2922361723 cites W2057044684 @default.
- W2922361723 cites W2065547561 @default.
- W2922361723 cites W2067723788 @default.
- W2922361723 cites W2069256114 @default.
- W2922361723 cites W2070395120 @default.
- W2922361723 cites W2071968219 @default.
- W2922361723 cites W2075513266 @default.
- W2922361723 cites W2083019885 @default.
- W2922361723 cites W2086001520 @default.
- W2922361723 cites W2089645904 @default.
- W2922361723 cites W2091455951 @default.
- W2922361723 cites W2103540160 @default.
- W2922361723 cites W2105714409 @default.
- W2922361723 cites W2120569046 @default.
- W2922361723 cites W2125472389 @default.
- W2922361723 cites W2132657008 @default.
- W2922361723 cites W2137034166 @default.
- W2922361723 cites W2140679062 @default.
- W2922361723 cites W2146227916 @default.
- W2922361723 cites W2147555471 @default.
- W2922361723 cites W2169427953 @default.
- W2922361723 cites W2346357836 @default.
- W2922361723 cites W2473313533 @default.
- W2922361723 cites W2519746072 @default.
- W2922361723 cites W2563305883 @default.
- W2922361723 cites W2751528411 @default.
- W2922361723 cites W2765825416 @default.
- W2922361723 cites W2772794744 @default.
- W2922361723 cites W2784125831 @default.
- W2922361723 cites W2790424370 @default.
- W2922361723 cites W2791665776 @default.
- W2922361723 cites W2793031008 @default.
- W2922361723 cites W2793831793 @default.
- W2922361723 cites W2878761843 @default.
- W2922361723 cites W2905650747 @default.
- W2922361723 cites W2911424673 @default.
- W2922361723 cites W2918843854 @default.
- W2922361723 cites W299701049 @default.
- W2922361723 cites W2068425329 @default.
- W2922361723 cites W2909569976 @default.
- W2922361723 doi "https://doi.org/10.3390/rs11060638" @default.
- W2922361723 hasPublicationYear "2019" @default.
- W2922361723 type Work @default.
- W2922361723 sameAs 2922361723 @default.
- W2922361723 citedByCount "114" @default.
- W2922361723 countsByYear W29223617232019 @default.
- W2922361723 countsByYear W29223617232020 @default.
- W2922361723 countsByYear W29223617232021 @default.
- W2922361723 countsByYear W29223617232022 @default.
- W2922361723 countsByYear W29223617232023 @default.
- W2922361723 crossrefType "journal-article" @default.
- W2922361723 hasAuthorship W2922361723A5000729733 @default.
- W2922361723 hasAuthorship W2922361723A5029814958 @default.
- W2922361723 hasAuthorship W2922361723A5038893210 @default.
- W2922361723 hasAuthorship W2922361723A5045437724 @default.
- W2922361723 hasAuthorship W2922361723A5071615222 @default.
- W2922361723 hasAuthorship W2922361723A5076352077 @default.
- W2922361723 hasAuthorship W2922361723A5077243121 @default.
- W2922361723 hasAuthorship W2922361723A5081665504 @default.
- W2922361723 hasBestOaLocation W29223617231 @default.
- W2922361723 hasConcept C114289077 @default.
- W2922361723 hasConcept C121332964 @default.