Matches in SemOpenAlex for { <https://semopenalex.org/work/W2922364443> ?p ?o ?g. }
Showing items 1 to 93 of
93
with 100 items per page.
- W2922364443 endingPage "1404" @default.
- W2922364443 startingPage "1393" @default.
- W2922364443 abstract "Spectral analysis is critical in social network analysis. As a vital step of the spectral analysis, the graph construction in many existing works utilizes content data only. Unfortunately, the content data often consists of noisy, sparse, and redundant features, which makes the resulting graph unstable and unreliable. In practice, besides the content data, social network data also contain link information, which provides additional information for graph construction. Some of previous works utilize the link data. However, the link data is often incomplete, which makes the resulting graph incomplete. To address these issues, we propose a novel Distilled Graph Clustering (DGC) method. It pursuits a <italic xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>distilled graph</i> based on both the content data and the link data. The proposed algorithm alternates between two steps: in the feature selection step, it finds the most representative feature subset w.r.t. an intermediate graph initialized with link data; in graph distillation step, the proposed method updates and refines the graph based on only the selected features. The final resulting graph, which is referred to as the distilled graph, is then utilized for spectral clustering on the large-scale social network data. Extensive experiments demonstrate the superiority of the proposed method." @default.
- W2922364443 created "2019-03-22" @default.
- W2922364443 creator A5005421447 @default.
- W2922364443 creator A5032352025 @default.
- W2922364443 creator A5045007670 @default.
- W2922364443 creator A5054036938 @default.
- W2922364443 creator A5062546146 @default.
- W2922364443 creator A5072326285 @default.
- W2922364443 date "2020-07-01" @default.
- W2922364443 modified "2023-10-18" @default.
- W2922364443 title "Learning Distilled Graph for Large-Scale Social Network Data Clustering" @default.
- W2922364443 cites W1966472199 @default.
- W2922364443 cites W1983611387 @default.
- W2922364443 cites W1996978148 @default.
- W2922364443 cites W1998029376 @default.
- W2922364443 cites W1999085008 @default.
- W2922364443 cites W2020652789 @default.
- W2922364443 cites W2025158524 @default.
- W2922364443 cites W2047735307 @default.
- W2922364443 cites W2066215526 @default.
- W2922364443 cites W2069782692 @default.
- W2922364443 cites W2100348027 @default.
- W2922364443 cites W2121947440 @default.
- W2922364443 cites W2127362089 @default.
- W2922364443 cites W2128873747 @default.
- W2922364443 cites W2130354913 @default.
- W2922364443 cites W2135674549 @default.
- W2922364443 cites W2158933803 @default.
- W2922364443 cites W2160540263 @default.
- W2922364443 cites W2402969480 @default.
- W2922364443 cites W2472069500 @default.
- W2922364443 cites W2507561135 @default.
- W2922364443 cites W2531147148 @default.
- W2922364443 cites W2601238642 @default.
- W2922364443 cites W2610350176 @default.
- W2922364443 cites W2611926148 @default.
- W2922364443 cites W3100594395 @default.
- W2922364443 cites W3148981562 @default.
- W2922364443 cites W4250589301 @default.
- W2922364443 cites W9448574 @default.
- W2922364443 doi "https://doi.org/10.1109/tkde.2019.2904068" @default.
- W2922364443 hasPublicationYear "2020" @default.
- W2922364443 type Work @default.
- W2922364443 sameAs 2922364443 @default.
- W2922364443 citedByCount "3" @default.
- W2922364443 countsByYear W29223644432020 @default.
- W2922364443 countsByYear W29223644432022 @default.
- W2922364443 countsByYear W29223644432023 @default.
- W2922364443 crossrefType "journal-article" @default.
- W2922364443 hasAuthorship W2922364443A5005421447 @default.
- W2922364443 hasAuthorship W2922364443A5032352025 @default.
- W2922364443 hasAuthorship W2922364443A5045007670 @default.
- W2922364443 hasAuthorship W2922364443A5054036938 @default.
- W2922364443 hasAuthorship W2922364443A5062546146 @default.
- W2922364443 hasAuthorship W2922364443A5072326285 @default.
- W2922364443 hasConcept C106937863 @default.
- W2922364443 hasConcept C124101348 @default.
- W2922364443 hasConcept C132525143 @default.
- W2922364443 hasConcept C154945302 @default.
- W2922364443 hasConcept C22047676 @default.
- W2922364443 hasConcept C41008148 @default.
- W2922364443 hasConcept C73555534 @default.
- W2922364443 hasConcept C80444323 @default.
- W2922364443 hasConceptScore W2922364443C106937863 @default.
- W2922364443 hasConceptScore W2922364443C124101348 @default.
- W2922364443 hasConceptScore W2922364443C132525143 @default.
- W2922364443 hasConceptScore W2922364443C154945302 @default.
- W2922364443 hasConceptScore W2922364443C22047676 @default.
- W2922364443 hasConceptScore W2922364443C41008148 @default.
- W2922364443 hasConceptScore W2922364443C73555534 @default.
- W2922364443 hasConceptScore W2922364443C80444323 @default.
- W2922364443 hasFunder F4320333051 @default.
- W2922364443 hasIssue "7" @default.
- W2922364443 hasLocation W29223644431 @default.
- W2922364443 hasOpenAccess W2922364443 @default.
- W2922364443 hasPrimaryLocation W29223644431 @default.
- W2922364443 hasRelatedWork W2085268214 @default.
- W2922364443 hasRelatedWork W2133212379 @default.
- W2922364443 hasRelatedWork W2790827031 @default.
- W2922364443 hasRelatedWork W3010881526 @default.
- W2922364443 hasRelatedWork W3034016839 @default.
- W2922364443 hasRelatedWork W3046888834 @default.
- W2922364443 hasRelatedWork W3167829529 @default.
- W2922364443 hasRelatedWork W3193559596 @default.
- W2922364443 hasRelatedWork W4287702396 @default.
- W2922364443 hasRelatedWork W4323896988 @default.
- W2922364443 hasVolume "32" @default.
- W2922364443 isParatext "false" @default.
- W2922364443 isRetracted "false" @default.
- W2922364443 magId "2922364443" @default.
- W2922364443 workType "article" @default.