Matches in SemOpenAlex for { <https://semopenalex.org/work/W2922407963> ?p ?o ?g. }
- W2922407963 endingPage "30" @default.
- W2922407963 startingPage "1" @default.
- W2922407963 abstract "Development of credit scoring models is important for financial institutions to identify defaulters and nondefaulters when making credit granting decisions. In recent years, artificial intelligence (AI) techniques have shown successful performance in credit scoring. Support Vector Machines and metaheuristic approaches have constantly received attention from researchers in establishing new credit models. In this paper, two AI techniques are reviewed with detailed discussions on credit scoring models built from both methods since 1997 to 2018. The main discussions are based on two main aspects which are model type with issues addressed and assessment procedures. Then, together with the compilation of past experiments results on common datasets, hybrid modelling is the state-of-the-art approach for both methods. Some possible research gaps for future research are identified." @default.
- W2922407963 created "2019-03-22" @default.
- W2922407963 creator A5038730409 @default.
- W2922407963 creator A5090068041 @default.
- W2922407963 date "2019-03-13" @default.
- W2922407963 modified "2023-10-16" @default.
- W2922407963 title "Credit Scoring: A Review on Support Vector Machines and Metaheuristic Approaches" @default.
- W2922407963 cites W1541815793 @default.
- W2922407963 cites W1608477047 @default.
- W2922407963 cites W1748537427 @default.
- W2922407963 cites W1966528570 @default.
- W2922407963 cites W1970388406 @default.
- W2922407963 cites W1975935631 @default.
- W2922407963 cites W1980770954 @default.
- W2922407963 cites W1982120517 @default.
- W2922407963 cites W1991383297 @default.
- W2922407963 cites W1992182144 @default.
- W2922407963 cites W1994085451 @default.
- W2922407963 cites W1994345439 @default.
- W2922407963 cites W1999311880 @default.
- W2922407963 cites W2011441697 @default.
- W2922407963 cites W2015954856 @default.
- W2922407963 cites W2020855305 @default.
- W2922407963 cites W2040693730 @default.
- W2922407963 cites W2040832520 @default.
- W2922407963 cites W2045314657 @default.
- W2922407963 cites W2048801439 @default.
- W2922407963 cites W2048905749 @default.
- W2922407963 cites W2051955809 @default.
- W2922407963 cites W2053490842 @default.
- W2922407963 cites W2058508414 @default.
- W2922407963 cites W2058988827 @default.
- W2922407963 cites W2060394011 @default.
- W2922407963 cites W2060462435 @default.
- W2922407963 cites W2072768981 @default.
- W2922407963 cites W2079196938 @default.
- W2922407963 cites W2079492342 @default.
- W2922407963 cites W2081180521 @default.
- W2922407963 cites W2083352970 @default.
- W2922407963 cites W2085831731 @default.
- W2922407963 cites W2086841270 @default.
- W2922407963 cites W2088048599 @default.
- W2922407963 cites W2093829413 @default.
- W2922407963 cites W2101075842 @default.
- W2922407963 cites W2102843519 @default.
- W2922407963 cites W2103780778 @default.
- W2922407963 cites W2107282997 @default.
- W2922407963 cites W2111855709 @default.
- W2922407963 cites W2128915443 @default.
- W2922407963 cites W2131816657 @default.
- W2922407963 cites W2133772980 @default.
- W2922407963 cites W2135411679 @default.
- W2922407963 cites W2144167491 @default.
- W2922407963 cites W2145576157 @default.
- W2922407963 cites W2152355877 @default.
- W2922407963 cites W2165721426 @default.
- W2922407963 cites W2168123127 @default.
- W2922407963 cites W2296034778 @default.
- W2922407963 cites W2550539074 @default.
- W2922407963 cites W2593370983 @default.
- W2922407963 cites W2616541616 @default.
- W2922407963 cites W2761700016 @default.
- W2922407963 cites W2765458100 @default.
- W2922407963 cites W2766659517 @default.
- W2922407963 cites W2768846335 @default.
- W2922407963 cites W2793403070 @default.
- W2922407963 cites W2799791930 @default.
- W2922407963 cites W2802240654 @default.
- W2922407963 cites W2888997571 @default.
- W2922407963 cites W2962845528 @default.
- W2922407963 cites W3122651343 @default.
- W2922407963 cites W3123427206 @default.
- W2922407963 cites W4230474071 @default.
- W2922407963 cites W4255513969 @default.
- W2922407963 doi "https://doi.org/10.1155/2019/1974794" @default.
- W2922407963 hasPublicationYear "2019" @default.
- W2922407963 type Work @default.
- W2922407963 sameAs 2922407963 @default.
- W2922407963 citedByCount "30" @default.
- W2922407963 countsByYear W29224079632020 @default.
- W2922407963 countsByYear W29224079632021 @default.
- W2922407963 countsByYear W29224079632022 @default.
- W2922407963 countsByYear W29224079632023 @default.
- W2922407963 crossrefType "journal-article" @default.
- W2922407963 hasAuthorship W2922407963A5038730409 @default.
- W2922407963 hasAuthorship W2922407963A5090068041 @default.
- W2922407963 hasBestOaLocation W29224079631 @default.
- W2922407963 hasConcept C109718341 @default.
- W2922407963 hasConcept C119857082 @default.
- W2922407963 hasConcept C12267149 @default.
- W2922407963 hasConcept C154945302 @default.
- W2922407963 hasConcept C199360897 @default.
- W2922407963 hasConcept C41008148 @default.
- W2922407963 hasConcept C86610423 @default.
- W2922407963 hasConceptScore W2922407963C109718341 @default.
- W2922407963 hasConceptScore W2922407963C119857082 @default.
- W2922407963 hasConceptScore W2922407963C12267149 @default.
- W2922407963 hasConceptScore W2922407963C154945302 @default.