Matches in SemOpenAlex for { <https://semopenalex.org/work/W2922426219> ?p ?o ?g. }
- W2922426219 endingPage "81" @default.
- W2922426219 startingPage "70" @default.
- W2922426219 abstract "The full utilization of Location-Based Vehicle Sensor Data (LB-VSD) can improve the efficiency of traffic control and management. Currently, LB-VSD is widely applied to the prediction of traffic speed. Like the GPS system, BeiDou satellite navigation system (BDS) can collect LB-VSD. In China, the key operation vehicles on the expressway are equipped with BDS to monitor the travel path. This provides a basis for predicting the traffic speed on expressway accurately. In this paper, considering the abnormal data collected by BDS, the screening and processing rules are made, and then the traffic speed sequence is extracted. Considering the data-missing problem caused by equipment failure or abnormal data elimination and the data sparse problem caused by small size of sample, a filling method based on trend-historical data is proposed. Traffic flow evolution is a complex process. Sudden accidents or bad weather can cause a sudden change in traffic flow and non-recurrent traffic congestion. The prediction accuracy of traditional machine learning methods is low when non-recurrent congestion occurred. In order to solve this problem, this paper adopts a deep learning model?Long Short-Term Memory (LSTM) to predict the traffic speed. Moreover, three-regime algorithm is used while building the prediction model. The prediction method is compared with Support Vector Regression (SVR) method. The results show that the prediction accuracy of the proposed method is higher than that of SVR algorithm, and the robustness is better in the case of non-recurrent traffic congestion." @default.
- W2922426219 created "2019-03-22" @default.
- W2922426219 creator A5028296559 @default.
- W2922426219 creator A5033581609 @default.
- W2922426219 creator A5049648279 @default.
- W2922426219 creator A5075642035 @default.
- W2922426219 creator A5091144053 @default.
- W2922426219 date "2019-01-01" @default.
- W2922426219 modified "2023-10-17" @default.
- W2922426219 title "Traffic Speed Prediction Under Non-Recurrent Congestion: Based on LSTM Method and BeiDou Navigation Satellite System Data" @default.
- W2922426219 cites W1968311321 @default.
- W2922426219 cites W1971757341 @default.
- W2922426219 cites W2003359455 @default.
- W2922426219 cites W2010098429 @default.
- W2922426219 cites W2015366158 @default.
- W2922426219 cites W2017759193 @default.
- W2922426219 cites W2025342775 @default.
- W2922426219 cites W2053512925 @default.
- W2922426219 cites W2054188095 @default.
- W2922426219 cites W2060900820 @default.
- W2922426219 cites W2074108366 @default.
- W2922426219 cites W2135410644 @default.
- W2922426219 cites W2143911491 @default.
- W2922426219 cites W2156705969 @default.
- W2922426219 cites W2165991108 @default.
- W2922426219 cites W2167999909 @default.
- W2922426219 cites W2183104740 @default.
- W2922426219 cites W2306968429 @default.
- W2922426219 cites W2504266609 @default.
- W2922426219 cites W2573587735 @default.
- W2922426219 cites W2579495707 @default.
- W2922426219 cites W2583466634 @default.
- W2922426219 cites W2593182953 @default.
- W2922426219 cites W2743198946 @default.
- W2922426219 cites W655895022 @default.
- W2922426219 doi "https://doi.org/10.1109/mits.2019.2903431" @default.
- W2922426219 hasPublicationYear "2019" @default.
- W2922426219 type Work @default.
- W2922426219 sameAs 2922426219 @default.
- W2922426219 citedByCount "63" @default.
- W2922426219 countsByYear W29224262192019 @default.
- W2922426219 countsByYear W29224262192020 @default.
- W2922426219 countsByYear W29224262192021 @default.
- W2922426219 countsByYear W29224262192022 @default.
- W2922426219 countsByYear W29224262192023 @default.
- W2922426219 crossrefType "journal-article" @default.
- W2922426219 hasAuthorship W2922426219A5028296559 @default.
- W2922426219 hasAuthorship W2922426219A5033581609 @default.
- W2922426219 hasAuthorship W2922426219A5049648279 @default.
- W2922426219 hasAuthorship W2922426219A5075642035 @default.
- W2922426219 hasAuthorship W2922426219A5091144053 @default.
- W2922426219 hasConcept C104317684 @default.
- W2922426219 hasConcept C108583219 @default.
- W2922426219 hasConcept C12267149 @default.
- W2922426219 hasConcept C124101348 @default.
- W2922426219 hasConcept C127413603 @default.
- W2922426219 hasConcept C14279187 @default.
- W2922426219 hasConcept C147168706 @default.
- W2922426219 hasConcept C154945302 @default.
- W2922426219 hasConcept C185592680 @default.
- W2922426219 hasConcept C207512268 @default.
- W2922426219 hasConcept C22212356 @default.
- W2922426219 hasConcept C2777783341 @default.
- W2922426219 hasConcept C2779888511 @default.
- W2922426219 hasConcept C2993660032 @default.
- W2922426219 hasConcept C31258907 @default.
- W2922426219 hasConcept C41008148 @default.
- W2922426219 hasConcept C50644808 @default.
- W2922426219 hasConcept C55493867 @default.
- W2922426219 hasConcept C60229501 @default.
- W2922426219 hasConcept C63479239 @default.
- W2922426219 hasConcept C64093975 @default.
- W2922426219 hasConcept C76155785 @default.
- W2922426219 hasConcept C79403827 @default.
- W2922426219 hasConceptScore W2922426219C104317684 @default.
- W2922426219 hasConceptScore W2922426219C108583219 @default.
- W2922426219 hasConceptScore W2922426219C12267149 @default.
- W2922426219 hasConceptScore W2922426219C124101348 @default.
- W2922426219 hasConceptScore W2922426219C127413603 @default.
- W2922426219 hasConceptScore W2922426219C14279187 @default.
- W2922426219 hasConceptScore W2922426219C147168706 @default.
- W2922426219 hasConceptScore W2922426219C154945302 @default.
- W2922426219 hasConceptScore W2922426219C185592680 @default.
- W2922426219 hasConceptScore W2922426219C207512268 @default.
- W2922426219 hasConceptScore W2922426219C22212356 @default.
- W2922426219 hasConceptScore W2922426219C2777783341 @default.
- W2922426219 hasConceptScore W2922426219C2779888511 @default.
- W2922426219 hasConceptScore W2922426219C2993660032 @default.
- W2922426219 hasConceptScore W2922426219C31258907 @default.
- W2922426219 hasConceptScore W2922426219C41008148 @default.
- W2922426219 hasConceptScore W2922426219C50644808 @default.
- W2922426219 hasConceptScore W2922426219C55493867 @default.
- W2922426219 hasConceptScore W2922426219C60229501 @default.
- W2922426219 hasConceptScore W2922426219C63479239 @default.
- W2922426219 hasConceptScore W2922426219C64093975 @default.
- W2922426219 hasConceptScore W2922426219C76155785 @default.
- W2922426219 hasConceptScore W2922426219C79403827 @default.
- W2922426219 hasFunder F4320321001 @default.