Matches in SemOpenAlex for { <https://semopenalex.org/work/W2922433778> ?p ?o ?g. }
- W2922433778 endingPage "994" @default.
- W2922433778 startingPage "983" @default.
- W2922433778 abstract "There are now several examples of nucleic-acid-displaying nanomaterials that have shown enhanced stability and improved cellular internalization of therapeutic DNA and RNA sequences. Nucleic-acid-displaying nanomaterials prolong the stability of nucleic acids in biological conditions while avoiding the need for external cationic transfection agents. They are made from biodegradable materials suitable for gene knockdown studies. The chemistry of a nucleic-acid-displaying scaffold can be built from a variety of sources – from amphiphilic block copolymers to surfactants – materials with easy-to-scale synthetic routes applicable to in vivo scale studies. There are now nucleic-acid-displaying nanomaterials that can be used for the codelivery of small-molecule drugs, enabling simultaneous delivery of charged oligonucleotides with hydrophobic drugs in a single formulation. Nanoscale structures of therapeutic nucleic acids have shown enormous potential to help clinicians realize the promise of personaliz ed medicine using gene-specific treatments. With the advent of better sequencing through bioinformatic approaches and advancements in nucleic acid stabilization chemistries, the field of synthetic nucleic acid nanomaterials has advanced tremendously. This review focuses on an emerging strategy geared at gene silencing without the use of traditional polycation-based transfection agents and discusses how such nanostructures are being chemically tailored to navigate biological systems to improve their circulation time and biodistribution. We also address important challenges moving forward, including quantification of delivery and the multiplexing of sequences for regulating gene networks – a goal well suited for this unique class of materials. Nanoscale structures of therapeutic nucleic acids have shown enormous potential to help clinicians realize the promise of personaliz ed medicine using gene-specific treatments. With the advent of better sequencing through bioinformatic approaches and advancements in nucleic acid stabilization chemistries, the field of synthetic nucleic acid nanomaterials has advanced tremendously. This review focuses on an emerging strategy geared at gene silencing without the use of traditional polycation-based transfection agents and discusses how such nanostructures are being chemically tailored to navigate biological systems to improve their circulation time and biodistribution. We also address important challenges moving forward, including quantification of delivery and the multiplexing of sequences for regulating gene networks – a goal well suited for this unique class of materials. family of RNA-binding proteins involved in gene silencing pathways. Responsible for the sequence-specific cleavage of mRNA when bound to short single stranded RNA such as siRNA. molecules composed of both hydrophobic and hydrophilic chemistries. short DNA sequences that initiate gene silencing through hybridization with mRNA. The formation of a DNA–mRNA duplex initiates RNaseH-mediated degradation that prevents protein translation. concentration of surfactant molecules at which micelles will form rather than remain separate in solution. DNA molecules that catalyze reactions in the presence of metal ions derived from in vitro selections. For example, DNAzymes can be evolved to target and cleave RNA molecules resulting in highly specific mRNA cleavage activity. duration of time that a molecule is stable before 50% of it degrades. In this context, most ONs have a short half-life (a few minutes) in cells in their native form without further chemical modification due to enzymatic degradation pathways. combining multiple molecules onto a single platform. In the context of gene regulation, it is common to use pools or cocktails of siRNA sequences against a single mRNA target to increase the likelihood of gene silencing. It can also refer to the use of multiple different siRNA sequences against different mRNA targets. nanoscale nucleic acid structures that (i) present dense displays of nucleic acid ligands, and (ii) degrade into structures which enhance nucleic acid stability and/or endosomal escape capacity. nucleic acid–surfactant conjugates crosslinked into micelle-like structures. Can be used for the delivery of TNAs and/or hydrophobic small molecules. use of polymers to shield the exposure of oligonucleotides on nanoscale polymeric structures for improved stability and biodistribution properties. commonly used cationic polymer for transfection of oligonucleotides into cells. Can display varying levels of primary, secondary, and tertiary amines, useful for electrostatically associating with the negatively charged phosphate backbone of RNA and DNA. RNA molecules that can accelerate a chemical or biochemical reaction, often in the presence of metal cations. a multi-ribonucleoprotein complex which incorporates mRNA and short single stranded RNA such as siRNA and miRNA for gene silencing. cellular mechanism in which dsRNA molecules are processed into shorter RNA fragments that can lower gene expression. spherically displayed nucleic acids densely functionalized on the surface of a nanoscale particle or colloid. chemical reagents that enable nucleic acids to undergo cellular uptake, either through shielding their negative charge, decreasing their polarity, or engaging in active receptor-mediated uptake." @default.
- W2922433778 created "2019-03-22" @default.
- W2922433778 creator A5030064573 @default.
- W2922433778 creator A5085760661 @default.
- W2922433778 creator A5086467511 @default.
- W2922433778 date "2019-09-01" @default.
- W2922433778 modified "2023-10-18" @default.
- W2922433778 title "Towards Self-Transfecting Nucleic Acid Nanostructures for Gene Regulation" @default.
- W2922433778 cites W1501059295 @default.
- W2922433778 cites W1647075334 @default.
- W2922433778 cites W1844274376 @default.
- W2922433778 cites W1864353616 @default.
- W2922433778 cites W1972841312 @default.
- W2922433778 cites W1979993551 @default.
- W2922433778 cites W1988471700 @default.
- W2922433778 cites W1994983564 @default.
- W2922433778 cites W1995770815 @default.
- W2922433778 cites W2000136129 @default.
- W2922433778 cites W2001580173 @default.
- W2922433778 cites W2002050544 @default.
- W2922433778 cites W2002715968 @default.
- W2922433778 cites W2003451349 @default.
- W2922433778 cites W2004755607 @default.
- W2922433778 cites W2007445917 @default.
- W2922433778 cites W2009993736 @default.
- W2922433778 cites W2016431195 @default.
- W2922433778 cites W2029772535 @default.
- W2922433778 cites W2040979815 @default.
- W2922433778 cites W2043580019 @default.
- W2922433778 cites W2049095447 @default.
- W2922433778 cites W2052566608 @default.
- W2922433778 cites W2055313665 @default.
- W2922433778 cites W2058209725 @default.
- W2922433778 cites W2064036940 @default.
- W2922433778 cites W2069399470 @default.
- W2922433778 cites W2072164275 @default.
- W2922433778 cites W2074675420 @default.
- W2922433778 cites W2093494397 @default.
- W2922433778 cites W2095151181 @default.
- W2922433778 cites W2096917691 @default.
- W2922433778 cites W2097202791 @default.
- W2922433778 cites W2098431098 @default.
- W2922433778 cites W2100323976 @default.
- W2922433778 cites W2119740058 @default.
- W2922433778 cites W2120820989 @default.
- W2922433778 cites W2121322725 @default.
- W2922433778 cites W2122935177 @default.
- W2922433778 cites W2126851107 @default.
- W2922433778 cites W2161764238 @default.
- W2922433778 cites W2170695692 @default.
- W2922433778 cites W2206438981 @default.
- W2922433778 cites W2264454935 @default.
- W2922433778 cites W2290646886 @default.
- W2922433778 cites W2316132657 @default.
- W2922433778 cites W2321771552 @default.
- W2922433778 cites W2328640092 @default.
- W2922433778 cites W2462318570 @default.
- W2922433778 cites W2551361647 @default.
- W2922433778 cites W2567147057 @default.
- W2922433778 cites W2568306867 @default.
- W2922433778 cites W2589086684 @default.
- W2922433778 cites W2594133976 @default.
- W2922433778 cites W2609686416 @default.
- W2922433778 cites W2733296761 @default.
- W2922433778 cites W2734799556 @default.
- W2922433778 cites W2736190544 @default.
- W2922433778 cites W2739334917 @default.
- W2922433778 cites W2750173239 @default.
- W2922433778 cites W2767281692 @default.
- W2922433778 cites W2770910677 @default.
- W2922433778 cites W2774563088 @default.
- W2922433778 cites W2777704830 @default.
- W2922433778 cites W2786514708 @default.
- W2922433778 cites W2789711141 @default.
- W2922433778 cites W2792105920 @default.
- W2922433778 cites W2794333370 @default.
- W2922433778 cites W2794986142 @default.
- W2922433778 cites W2795728717 @default.
- W2922433778 cites W2797070766 @default.
- W2922433778 cites W2801306384 @default.
- W2922433778 cites W2802338619 @default.
- W2922433778 cites W2802881274 @default.
- W2922433778 cites W2805454243 @default.
- W2922433778 cites W2806658815 @default.
- W2922433778 cites W2808372952 @default.
- W2922433778 cites W2809830667 @default.
- W2922433778 cites W2810909862 @default.
- W2922433778 cites W2811501377 @default.
- W2922433778 cites W2893168313 @default.
- W2922433778 cites W2894631587 @default.
- W2922433778 cites W2905584155 @default.
- W2922433778 cites W4211039187 @default.
- W2922433778 cites W4236536513 @default.
- W2922433778 cites W4237229340 @default.
- W2922433778 cites W4362217323 @default.
- W2922433778 doi "https://doi.org/10.1016/j.tibtech.2019.01.008" @default.
- W2922433778 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30879697" @default.
- W2922433778 hasPublicationYear "2019" @default.