Matches in SemOpenAlex for { <https://semopenalex.org/work/W2922486367> ?p ?o ?g. }
- W2922486367 endingPage "69" @default.
- W2922486367 startingPage "54" @default.
- W2922486367 abstract "Driving information and data under potential vehicle crashes create opportunities for extensive real-world observations of driver behaviors and relevant factors that significantly influence the driving safety in emergency scenarios. Furthermore, the availability of such data also enhances the collision avoidance systems (CASs) by evaluating driver?s actions in near-crash scenarios and providing timely warnings. These applications motivate the need for heuristic tools capable of interpreting the correlations of driving risk with driver/vehicle characteristics and incidental traffic factors. In this paper, we acquired amount of real-world field data and built a comprehensive driver-vehicle-road dataset for actual driver behavior evaluation. The proposed method works in two steps. In the first step, a variable precision rough set (VPRS) based classifier derives a simplified decision rules from field driving dataset, which presents the essential attributes relevant to driving safety. In the second step, we quantify the mutual information entropy of each attribute to evaluate the significance of different factors on happening a vehicle crash, then an accumulation of weighted driver-vehicle-road is calculated to achieve an index reflecting the driving safety level. The performance of the proposed method is demonstrated in an offline analysis of the driving data collected from field trials, where the goal is to infer the emergency braking actions in next short term. The results indicate that our proposed model is a good alternative for providing drivers immediate warnings with high prediction accuracy and stability." @default.
- W2922486367 created "2019-03-22" @default.
- W2922486367 creator A5006361245 @default.
- W2922486367 creator A5020451053 @default.
- W2922486367 creator A5060529329 @default.
- W2922486367 creator A5062211442 @default.
- W2922486367 creator A5071057752 @default.
- W2922486367 date "2019-01-01" @default.
- W2922486367 modified "2023-10-18" @default.
- W2922486367 title "Rough Set Based Method for Vehicle Collision Risk Assessment Through Inferring Driver's Braking Actions in Near-Crash Situations" @default.
- W2922486367 cites W1842501785 @default.
- W2922486367 cites W1932781435 @default.
- W2922486367 cites W1963490115 @default.
- W2922486367 cites W1972352696 @default.
- W2922486367 cites W1975980892 @default.
- W2922486367 cites W1994984228 @default.
- W2922486367 cites W1995904828 @default.
- W2922486367 cites W1997362234 @default.
- W2922486367 cites W2010733489 @default.
- W2922486367 cites W2014546554 @default.
- W2922486367 cites W2021784071 @default.
- W2922486367 cites W2026503419 @default.
- W2922486367 cites W2031855406 @default.
- W2922486367 cites W2042404299 @default.
- W2922486367 cites W2046017949 @default.
- W2922486367 cites W2052770734 @default.
- W2922486367 cites W2056517228 @default.
- W2922486367 cites W2058816802 @default.
- W2922486367 cites W2069270297 @default.
- W2922486367 cites W2077674449 @default.
- W2922486367 cites W2091317993 @default.
- W2922486367 cites W2095324437 @default.
- W2922486367 cites W2105473662 @default.
- W2922486367 cites W2118700979 @default.
- W2922486367 cites W2120096422 @default.
- W2922486367 cites W2122362215 @default.
- W2922486367 cites W2144357069 @default.
- W2922486367 cites W2164617893 @default.
- W2922486367 cites W2166862346 @default.
- W2922486367 cites W2170465906 @default.
- W2922486367 cites W2174602916 @default.
- W2922486367 cites W2312819030 @default.
- W2922486367 cites W2408768806 @default.
- W2922486367 cites W2792222831 @default.
- W2922486367 cites W2909702195 @default.
- W2922486367 cites W4293682399 @default.
- W2922486367 doi "https://doi.org/10.1109/mits.2019.2903539" @default.
- W2922486367 hasPublicationYear "2019" @default.
- W2922486367 type Work @default.
- W2922486367 sameAs 2922486367 @default.
- W2922486367 citedByCount "14" @default.
- W2922486367 countsByYear W29224863672020 @default.
- W2922486367 countsByYear W29224863672021 @default.
- W2922486367 countsByYear W29224863672022 @default.
- W2922486367 crossrefType "journal-article" @default.
- W2922486367 hasAuthorship W2922486367A5006361245 @default.
- W2922486367 hasAuthorship W2922486367A5020451053 @default.
- W2922486367 hasAuthorship W2922486367A5060529329 @default.
- W2922486367 hasAuthorship W2922486367A5062211442 @default.
- W2922486367 hasAuthorship W2922486367A5071057752 @default.
- W2922486367 hasConcept C111012933 @default.
- W2922486367 hasConcept C121704057 @default.
- W2922486367 hasConcept C124101348 @default.
- W2922486367 hasConcept C127413603 @default.
- W2922486367 hasConcept C127757376 @default.
- W2922486367 hasConcept C154945302 @default.
- W2922486367 hasConcept C166735990 @default.
- W2922486367 hasConcept C171146098 @default.
- W2922486367 hasConcept C173801870 @default.
- W2922486367 hasConcept C183469790 @default.
- W2922486367 hasConcept C199360897 @default.
- W2922486367 hasConcept C2780689630 @default.
- W2922486367 hasConcept C3017903533 @default.
- W2922486367 hasConcept C3017944768 @default.
- W2922486367 hasConcept C38652104 @default.
- W2922486367 hasConcept C41008148 @default.
- W2922486367 hasConcept C44154836 @default.
- W2922486367 hasConcept C71924100 @default.
- W2922486367 hasConcept C87833898 @default.
- W2922486367 hasConcept C95623464 @default.
- W2922486367 hasConcept C99454951 @default.
- W2922486367 hasConceptScore W2922486367C111012933 @default.
- W2922486367 hasConceptScore W2922486367C121704057 @default.
- W2922486367 hasConceptScore W2922486367C124101348 @default.
- W2922486367 hasConceptScore W2922486367C127413603 @default.
- W2922486367 hasConceptScore W2922486367C127757376 @default.
- W2922486367 hasConceptScore W2922486367C154945302 @default.
- W2922486367 hasConceptScore W2922486367C166735990 @default.
- W2922486367 hasConceptScore W2922486367C171146098 @default.
- W2922486367 hasConceptScore W2922486367C173801870 @default.
- W2922486367 hasConceptScore W2922486367C183469790 @default.
- W2922486367 hasConceptScore W2922486367C199360897 @default.
- W2922486367 hasConceptScore W2922486367C2780689630 @default.
- W2922486367 hasConceptScore W2922486367C3017903533 @default.
- W2922486367 hasConceptScore W2922486367C3017944768 @default.
- W2922486367 hasConceptScore W2922486367C38652104 @default.
- W2922486367 hasConceptScore W2922486367C41008148 @default.
- W2922486367 hasConceptScore W2922486367C44154836 @default.