Matches in SemOpenAlex for { <https://semopenalex.org/work/W2922635029> ?p ?o ?g. }
- W2922635029 abstract "Machine learning methods have proved to be useful for the recognition of patterns in statistical data. The measurement outcomes are intrinsically random in quantum physics, however, they do have a pattern when the measurements are performed successively on an open quantum system. This pattern is due to the system-environment interaction and contains information about the relaxation rates as well as non-Markovian memory effects. Here we develop a method to extract the information about the unknown environment from a series of projective single-shot measurements on the system (without resorting to the process tomography). The method is based on embedding the non-Markovian system dynamics into a Markovian dynamics of the system and the effective reservoir of finite dimension. The generator of Markovian embedding is learned by the maximum likelihood estimation. We verify the method by comparing its prediction with an exactly solvable non-Markovian dynamics. The developed algorithm to learn unknown quantum environments enables one to efficiently control and manipulate quantum systems." @default.
- W2922635029 created "2019-04-01" @default.
- W2922635029 creator A5052224244 @default.
- W2922635029 creator A5058530409 @default.
- W2922635029 creator A5065756001 @default.
- W2922635029 creator A5068289206 @default.
- W2922635029 date "2020-04-09" @default.
- W2922635029 modified "2023-10-18" @default.
- W2922635029 title "Machine Learning Non-Markovian Quantum Dynamics" @default.
- W2922635029 cites W1511447649 @default.
- W2922635029 cites W1530534803 @default.
- W2922635029 cites W1534679866 @default.
- W2922635029 cites W1977614027 @default.
- W2922635029 cites W1984032391 @default.
- W2922635029 cites W1997230465 @default.
- W2922635029 cites W2015263507 @default.
- W2922635029 cites W2015683881 @default.
- W2922635029 cites W2016152637 @default.
- W2922635029 cites W2032234739 @default.
- W2922635029 cites W2032839191 @default.
- W2922635029 cites W2033449819 @default.
- W2922635029 cites W2039593059 @default.
- W2922635029 cites W2041922678 @default.
- W2922635029 cites W2050713619 @default.
- W2922635029 cites W2069207980 @default.
- W2922635029 cites W2076976740 @default.
- W2922635029 cites W2083590256 @default.
- W2922635029 cites W2090471280 @default.
- W2922635029 cites W2130860507 @default.
- W2922635029 cites W2133586309 @default.
- W2922635029 cites W2141450020 @default.
- W2922635029 cites W2142679764 @default.
- W2922635029 cites W2158485710 @default.
- W2922635029 cites W2181284682 @default.
- W2922635029 cites W2187217746 @default.
- W2922635029 cites W2410406417 @default.
- W2922635029 cites W2473976255 @default.
- W2922635029 cites W2492787430 @default.
- W2922635029 cites W2529996245 @default.
- W2922635029 cites W2587584679 @default.
- W2922635029 cites W2607611777 @default.
- W2922635029 cites W2613387220 @default.
- W2922635029 cites W2614216659 @default.
- W2922635029 cites W2620333037 @default.
- W2922635029 cites W2649051464 @default.
- W2922635029 cites W2747675077 @default.
- W2922635029 cites W2755220802 @default.
- W2922635029 cites W2765834071 @default.
- W2922635029 cites W2769210104 @default.
- W2922635029 cites W2772283936 @default.
- W2922635029 cites W2776502559 @default.
- W2922635029 cites W2784093318 @default.
- W2922635029 cites W2786366947 @default.
- W2922635029 cites W2786716216 @default.
- W2922635029 cites W2787752732 @default.
- W2922635029 cites W2795138965 @default.
- W2922635029 cites W2804229586 @default.
- W2922635029 cites W2806408532 @default.
- W2922635029 cites W2900048485 @default.
- W2922635029 cites W2902476098 @default.
- W2922635029 cites W2905545131 @default.
- W2922635029 cites W2908358343 @default.
- W2922635029 cites W2910172672 @default.
- W2922635029 cites W2913757230 @default.
- W2922635029 cites W2923537029 @default.
- W2922635029 cites W2964616592 @default.
- W2922635029 cites W3000441909 @default.
- W2922635029 cites W3037447387 @default.
- W2922635029 cites W3099015431 @default.
- W2922635029 cites W3099834476 @default.
- W2922635029 cites W3100140276 @default.
- W2922635029 cites W3100608836 @default.
- W2922635029 cites W3101169663 @default.
- W2922635029 cites W3102418218 @default.
- W2922635029 cites W3103440740 @default.
- W2922635029 cites W3103663754 @default.
- W2922635029 cites W3104403078 @default.
- W2922635029 cites W3105860148 @default.
- W2922635029 cites W3106311568 @default.
- W2922635029 cites W3213943817 @default.
- W2922635029 cites W4250589301 @default.
- W2922635029 cites W4297944615 @default.
- W2922635029 doi "https://doi.org/10.1103/physrevlett.124.140502" @default.
- W2922635029 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32338970" @default.
- W2922635029 hasPublicationYear "2020" @default.
- W2922635029 type Work @default.
- W2922635029 sameAs 2922635029 @default.
- W2922635029 citedByCount "66" @default.
- W2922635029 countsByYear W29226350292019 @default.
- W2922635029 countsByYear W29226350292020 @default.
- W2922635029 countsByYear W29226350292021 @default.
- W2922635029 countsByYear W29226350292022 @default.
- W2922635029 countsByYear W29226350292023 @default.
- W2922635029 crossrefType "journal-article" @default.
- W2922635029 hasAuthorship W2922635029A5052224244 @default.
- W2922635029 hasAuthorship W2922635029A5058530409 @default.
- W2922635029 hasAuthorship W2922635029A5065756001 @default.
- W2922635029 hasAuthorship W2922635029A5068289206 @default.
- W2922635029 hasBestOaLocation W29226350292 @default.
- W2922635029 hasConcept C105795698 @default.