Matches in SemOpenAlex for { <https://semopenalex.org/work/W2922636095> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W2922636095 endingPage "002072091983305" @default.
- W2922636095 startingPage "002072091983305" @default.
- W2922636095 abstract "With the recent development of agriculture, the growing area and utilization rate of facilities are increasing, but it is necessary to control and prevent pests, and if the disease is detected at an early stage, appropriate treatment is possible. To this end, researches on control systems using artificial intelligence are being expanded recently, therefore we propose a pest diagnosis system using data acquisition and deep learning through collective intelligence. This study modeled the diagnostic system based on deep learning using the collective intelligence that the user group participates in the prediction of pests arising from the plant cultivation and the data registered by experts in the field. Diagnostic data were collected information on pest diagnosis registered on the Internet and used; the collected data were constructed as a data set that is easy to analyze, through preprocessing, types of crops were classified, pests data were studied through TensorFlow. Most of the researches for the control and prevention of pests are based on web-based expert system. In this paper, we collect data through the collective intelligence and the general public. Especially, when a user uses input question and answers data without a formalized format, it gives wrong prediction; therefore, the preprocessing process was performed for data analysis because it could adversely affect the reliability of the system. After the data collection and preprocessing process is completed, a prediction model is created using TensorFlow, an artificial intelligence open source framework, using the generated data set. The user was allowed to input arbitrary data values while testing the data one to five times based on the data value and the effective value of the prediction model was confirmed according to the change of the value. Through the research, it is proved that diagnosis of pests is possible by using collective intelligence. In future research, research on the construction of a system that enables users to diagnose pests more easily should be continued using not only collective intelligence but also image and video." @default.
- W2922636095 created "2019-04-01" @default.
- W2922636095 creator A5025050406 @default.
- W2922636095 creator A5047302344 @default.
- W2922636095 creator A5085707516 @default.
- W2922636095 date "2019-03-18" @default.
- W2922636095 modified "2023-09-25" @default.
- W2922636095 title "Pest diagnosis system based on deep learning using collective intelligence" @default.
- W2922636095 cites W1514637787 @default.
- W2922636095 cites W1885185971 @default.
- W2922636095 cites W1964170350 @default.
- W2922636095 cites W1964278537 @default.
- W2922636095 cites W1973277761 @default.
- W2922636095 cites W2073608347 @default.
- W2922636095 cites W2112796928 @default.
- W2922636095 cites W2136922672 @default.
- W2922636095 cites W2156132617 @default.
- W2922636095 cites W2261527505 @default.
- W2922636095 cites W311323868 @default.
- W2922636095 doi "https://doi.org/10.1177/0020720919833052" @default.
- W2922636095 hasPublicationYear "2019" @default.
- W2922636095 type Work @default.
- W2922636095 sameAs 2922636095 @default.
- W2922636095 citedByCount "4" @default.
- W2922636095 countsByYear W29226360952019 @default.
- W2922636095 countsByYear W29226360952020 @default.
- W2922636095 countsByYear W29226360952022 @default.
- W2922636095 crossrefType "journal-article" @default.
- W2922636095 hasAuthorship W2922636095A5025050406 @default.
- W2922636095 hasAuthorship W2922636095A5047302344 @default.
- W2922636095 hasAuthorship W2922636095A5085707516 @default.
- W2922636095 hasConcept C10551718 @default.
- W2922636095 hasConcept C105795698 @default.
- W2922636095 hasConcept C108583219 @default.
- W2922636095 hasConcept C111919701 @default.
- W2922636095 hasConcept C119857082 @default.
- W2922636095 hasConcept C124101348 @default.
- W2922636095 hasConcept C133462117 @default.
- W2922636095 hasConcept C154945302 @default.
- W2922636095 hasConcept C202444582 @default.
- W2922636095 hasConcept C33923547 @default.
- W2922636095 hasConcept C34736171 @default.
- W2922636095 hasConcept C41008148 @default.
- W2922636095 hasConcept C58489278 @default.
- W2922636095 hasConcept C9652623 @default.
- W2922636095 hasConcept C98045186 @default.
- W2922636095 hasConceptScore W2922636095C10551718 @default.
- W2922636095 hasConceptScore W2922636095C105795698 @default.
- W2922636095 hasConceptScore W2922636095C108583219 @default.
- W2922636095 hasConceptScore W2922636095C111919701 @default.
- W2922636095 hasConceptScore W2922636095C119857082 @default.
- W2922636095 hasConceptScore W2922636095C124101348 @default.
- W2922636095 hasConceptScore W2922636095C133462117 @default.
- W2922636095 hasConceptScore W2922636095C154945302 @default.
- W2922636095 hasConceptScore W2922636095C202444582 @default.
- W2922636095 hasConceptScore W2922636095C33923547 @default.
- W2922636095 hasConceptScore W2922636095C34736171 @default.
- W2922636095 hasConceptScore W2922636095C41008148 @default.
- W2922636095 hasConceptScore W2922636095C58489278 @default.
- W2922636095 hasConceptScore W2922636095C9652623 @default.
- W2922636095 hasConceptScore W2922636095C98045186 @default.
- W2922636095 hasLocation W29226360951 @default.
- W2922636095 hasOpenAccess W2922636095 @default.
- W2922636095 hasPrimaryLocation W29226360951 @default.
- W2922636095 hasRelatedWork W2022288139 @default.
- W2922636095 hasRelatedWork W2091530068 @default.
- W2922636095 hasRelatedWork W2106760772 @default.
- W2922636095 hasRelatedWork W2373240585 @default.
- W2922636095 hasRelatedWork W3086422166 @default.
- W2922636095 hasRelatedWork W3215374478 @default.
- W2922636095 hasRelatedWork W4200250512 @default.
- W2922636095 hasRelatedWork W4231149697 @default.
- W2922636095 hasRelatedWork W4285479813 @default.
- W2922636095 hasRelatedWork W4313289316 @default.
- W2922636095 isParatext "false" @default.
- W2922636095 isRetracted "false" @default.
- W2922636095 magId "2922636095" @default.
- W2922636095 workType "article" @default.