Matches in SemOpenAlex for { <https://semopenalex.org/work/W2922653022> ?p ?o ?g. }
Showing items 1 to 76 of
76
with 100 items per page.
- W2922653022 abstract "As the typical litho hotspot detection runtime continue to increase with sub-10nm technology node due to increasing design and process complexity, many DFM techniques are exploring new methods that can expedite some of their advanced verification processes. The benefit of improved runtimes through simulation can be obtained by reducing the amount of data being sent to simulation. By inserting a pattern matching operation, a system can be designed such that it only simulates in the vicinity of topologies that somewhat resemble hotspots while ignoring all other data. Pattern Matching improved overall runtime significantly. However, pattern matching techniques require a library of accumulated known litho hotspots in allowed accuracy rate. In this paper, we present a fast and accurate litho hotspot detection methodology using specialized machine learning. We built a deep neural network with training from real hotspot candidates. Experimental results demonstrate Machine Learning’s ability to predict hotspots and achieve greater than 90% detection accuracy and coverage, with best achieved accuracy 99.9% while reducing overall runtime compared to full litho simulation." @default.
- W2922653022 created "2019-04-01" @default.
- W2922653022 creator A5001602453 @default.
- W2922653022 creator A5031903403 @default.
- W2922653022 creator A5034742993 @default.
- W2922653022 creator A5035757647 @default.
- W2922653022 creator A5049112541 @default.
- W2922653022 creator A5055664696 @default.
- W2922653022 creator A5061563066 @default.
- W2922653022 creator A5063469685 @default.
- W2922653022 creator A5065303958 @default.
- W2922653022 creator A5072903821 @default.
- W2922653022 creator A5077813609 @default.
- W2922653022 creator A5078511232 @default.
- W2922653022 creator A5085555967 @default.
- W2922653022 creator A5089127799 @default.
- W2922653022 date "2019-03-20" @default.
- W2922653022 modified "2023-09-27" @default.
- W2922653022 title "Machine learning to improve accuracy of fast lithographic hotspot detection" @default.
- W2922653022 cites W1982606760 @default.
- W2922653022 cites W2553320496 @default.
- W2922653022 cites W2404192559 @default.
- W2922653022 doi "https://doi.org/10.1117/12.2515139" @default.
- W2922653022 hasPublicationYear "2019" @default.
- W2922653022 type Work @default.
- W2922653022 sameAs 2922653022 @default.
- W2922653022 citedByCount "1" @default.
- W2922653022 countsByYear W29226530222022 @default.
- W2922653022 crossrefType "proceedings-article" @default.
- W2922653022 hasAuthorship W2922653022A5001602453 @default.
- W2922653022 hasAuthorship W2922653022A5031903403 @default.
- W2922653022 hasAuthorship W2922653022A5034742993 @default.
- W2922653022 hasAuthorship W2922653022A5035757647 @default.
- W2922653022 hasAuthorship W2922653022A5049112541 @default.
- W2922653022 hasAuthorship W2922653022A5055664696 @default.
- W2922653022 hasAuthorship W2922653022A5061563066 @default.
- W2922653022 hasAuthorship W2922653022A5063469685 @default.
- W2922653022 hasAuthorship W2922653022A5065303958 @default.
- W2922653022 hasAuthorship W2922653022A5072903821 @default.
- W2922653022 hasAuthorship W2922653022A5077813609 @default.
- W2922653022 hasAuthorship W2922653022A5078511232 @default.
- W2922653022 hasAuthorship W2922653022A5085555967 @default.
- W2922653022 hasAuthorship W2922653022A5089127799 @default.
- W2922653022 hasConcept C127313418 @default.
- W2922653022 hasConcept C146481406 @default.
- W2922653022 hasConcept C154945302 @default.
- W2922653022 hasConcept C192562407 @default.
- W2922653022 hasConcept C204223013 @default.
- W2922653022 hasConcept C41008148 @default.
- W2922653022 hasConcept C49040817 @default.
- W2922653022 hasConcept C8058405 @default.
- W2922653022 hasConceptScore W2922653022C127313418 @default.
- W2922653022 hasConceptScore W2922653022C146481406 @default.
- W2922653022 hasConceptScore W2922653022C154945302 @default.
- W2922653022 hasConceptScore W2922653022C192562407 @default.
- W2922653022 hasConceptScore W2922653022C204223013 @default.
- W2922653022 hasConceptScore W2922653022C41008148 @default.
- W2922653022 hasConceptScore W2922653022C49040817 @default.
- W2922653022 hasConceptScore W2922653022C8058405 @default.
- W2922653022 hasLocation W29226530221 @default.
- W2922653022 hasOpenAccess W2922653022 @default.
- W2922653022 hasPrimaryLocation W29226530221 @default.
- W2922653022 hasRelatedWork W1993323243 @default.
- W2922653022 hasRelatedWork W2050527628 @default.
- W2922653022 hasRelatedWork W2078898069 @default.
- W2922653022 hasRelatedWork W2089689336 @default.
- W2922653022 hasRelatedWork W2172678467 @default.
- W2922653022 hasRelatedWork W2306000223 @default.
- W2922653022 hasRelatedWork W2365475068 @default.
- W2922653022 hasRelatedWork W2596906908 @default.
- W2922653022 hasRelatedWork W2924826420 @default.
- W2922653022 hasRelatedWork W2976284395 @default.
- W2922653022 isParatext "false" @default.
- W2922653022 isRetracted "false" @default.
- W2922653022 magId "2922653022" @default.
- W2922653022 workType "article" @default.