Matches in SemOpenAlex for { <https://semopenalex.org/work/W2922791331> ?p ?o ?g. }
- W2922791331 abstract "We describe a hybrid analog-digital computing approach to solve important combinatorial optimization problems that leverages memristors (two-terminal nonvolatile memories). While previous memristor accelerators have had to minimize analog noise effects, we show that our optimization solver harnesses such noise as a computing resource. Here we describe a memristor-Hopfield Neural Network (mem-HNN) with massively parallel operations performed in a dense crossbar array. We provide experimental demonstrations solving NP-hard max-cut problems directly in analog crossbar arrays, and supplement this with experimentally-grounded simulations to explore scalability with problem size, providing the success probabilities, time and energy to solution, and interactions with intrinsic analog noise. Compared to fully digital approaches, and present-day quantum and optical accelerators, we forecast the mem-HNN to have over four orders of magnitude higher solution throughput per power consumption. This suggests substantially improved performance and scalability compared to current quantum annealing approaches, while operating at room temperature and taking advantage of existing CMOS technology augmented with emerging analog non-volatile memristors." @default.
- W2922791331 created "2019-04-01" @default.
- W2922791331 creator A5007928811 @default.
- W2922791331 creator A5008006179 @default.
- W2922791331 creator A5011065863 @default.
- W2922791331 creator A5014710582 @default.
- W2922791331 creator A5044224050 @default.
- W2922791331 creator A5054894631 @default.
- W2922791331 creator A5058291122 @default.
- W2922791331 creator A5060839571 @default.
- W2922791331 creator A5066881061 @default.
- W2922791331 creator A5073324706 @default.
- W2922791331 creator A5081675173 @default.
- W2922791331 date "2019-03-26" @default.
- W2922791331 modified "2023-09-23" @default.
- W2922791331 title "Harnessing Intrinsic Noise in Memristor Hopfield Neural Networks for Combinatorial Optimization." @default.
- W2922791331 cites W1542981317 @default.
- W2922791331 cites W1555979698 @default.
- W2922791331 cites W1597286183 @default.
- W2922791331 cites W1937359183 @default.
- W2922791331 cites W1965762557 @default.
- W2922791331 cites W1973695593 @default.
- W2922791331 cites W2011784502 @default.
- W2922791331 cites W2017557201 @default.
- W2922791331 cites W2024060531 @default.
- W2922791331 cites W2024860775 @default.
- W2922791331 cites W2036687738 @default.
- W2922791331 cites W2039122980 @default.
- W2922791331 cites W2042492924 @default.
- W2922791331 cites W2047478832 @default.
- W2922791331 cites W2067612530 @default.
- W2922791331 cites W2070201992 @default.
- W2922791331 cites W2076998221 @default.
- W2922791331 cites W2098838773 @default.
- W2922791331 cites W2104013346 @default.
- W2922791331 cites W2110203874 @default.
- W2922791331 cites W2112246162 @default.
- W2922791331 cites W2118160179 @default.
- W2922791331 cites W2122221396 @default.
- W2922791331 cites W2127487518 @default.
- W2922791331 cites W2128084896 @default.
- W2922791331 cites W2129610161 @default.
- W2922791331 cites W2131215403 @default.
- W2922791331 cites W2149380925 @default.
- W2922791331 cites W2167667993 @default.
- W2922791331 cites W2197817604 @default.
- W2922791331 cites W2235148767 @default.
- W2922791331 cites W2260028708 @default.
- W2922791331 cites W2293892232 @default.
- W2922791331 cites W2331737637 @default.
- W2922791331 cites W2336669647 @default.
- W2922791331 cites W2399958287 @default.
- W2922791331 cites W2468642654 @default.
- W2922791331 cites W2518281301 @default.
- W2922791331 cites W2549309192 @default.
- W2922791331 cites W2552568312 @default.
- W2922791331 cites W2595593680 @default.
- W2922791331 cites W2729259575 @default.
- W2922791331 cites W2734190907 @default.
- W2922791331 cites W2771114131 @default.
- W2922791331 cites W2778935320 @default.
- W2922791331 cites W2782791387 @default.
- W2922791331 cites W2787759178 @default.
- W2922791331 cites W2801532743 @default.
- W2922791331 cites W2803163155 @default.
- W2922791331 cites W2805362231 @default.
- W2922791331 cites W2810649880 @default.
- W2922791331 cites W2887230019 @default.
- W2922791331 cites W2890613163 @default.
- W2922791331 cites W2899999483 @default.
- W2922791331 cites W2901692656 @default.
- W2922791331 cites W2911840598 @default.
- W2922791331 cites W2913104037 @default.
- W2922791331 cites W2946426480 @default.
- W2922791331 cites W2949194058 @default.
- W2922791331 cites W2963757591 @default.
- W2922791331 cites W3098120853 @default.
- W2922791331 cites W3101421194 @default.
- W2922791331 cites W3104708747 @default.
- W2922791331 cites W3105773508 @default.
- W2922791331 hasPublicationYear "2019" @default.
- W2922791331 type Work @default.
- W2922791331 sameAs 2922791331 @default.
- W2922791331 citedByCount "3" @default.
- W2922791331 countsByYear W29227913312019 @default.
- W2922791331 countsByYear W29227913312020 @default.
- W2922791331 crossrefType "posted-content" @default.
- W2922791331 hasAuthorship W2922791331A5007928811 @default.
- W2922791331 hasAuthorship W2922791331A5008006179 @default.
- W2922791331 hasAuthorship W2922791331A5011065863 @default.
- W2922791331 hasAuthorship W2922791331A5014710582 @default.
- W2922791331 hasAuthorship W2922791331A5044224050 @default.
- W2922791331 hasAuthorship W2922791331A5054894631 @default.
- W2922791331 hasAuthorship W2922791331A5058291122 @default.
- W2922791331 hasAuthorship W2922791331A5060839571 @default.
- W2922791331 hasAuthorship W2922791331A5066881061 @default.
- W2922791331 hasAuthorship W2922791331A5073324706 @default.
- W2922791331 hasAuthorship W2922791331A5081675173 @default.
- W2922791331 hasConcept C113775141 @default.
- W2922791331 hasConcept C115961682 @default.