Matches in SemOpenAlex for { <https://semopenalex.org/work/W2922843924> ?p ?o ?g. }
- W2922843924 endingPage "16" @default.
- W2922843924 startingPage "3" @default.
- W2922843924 abstract "The prediction of the uniaxial compression strength (qu) of soil cement mixtures is of upmost importance for design purposes. This is done traditionally by laboratory tests which is time and resources consuming. In this paper it is presented a new approach to assess qu over time based on the high learning capabilities of Artificial Intelligence (AI) techniques. A database of 444 records, encompassing cohesionless to cohesive and organic soils, different binder types, mixture conditions and curing time, were used to train three models based on Artificial Neural Networks (ANNs), Support Vector Machines (SVMs) and Multiple Regression (MRs). The results show a promising performance in qu prediction of laboratory soil cement mixtures, being the best results achieved with an average of SVMs and ANNs model (RR2=0,95). These models catch very well the major effects of the input variables water/cement ratio, cement content, organic matter content and curing time, which are known as key parameters in soil cement mixtures behavior." @default.
- W2922843924 created "2019-04-01" @default.
- W2922843924 creator A5008664913 @default.
- W2922843924 creator A5016423611 @default.
- W2922843924 creator A5021727213 @default.
- W2922843924 creator A5062036279 @default.
- W2922843924 creator A5074348997 @default.
- W2922843924 date "2019-03-01" @default.
- W2922843924 modified "2023-09-23" @default.
- W2922843924 title "Data mining approach for unconfined compression strength prediction of laboratory soil cement mixtures" @default.
- W2922843924 cites W1554944419 @default.
- W2922843924 cites W1578517626 @default.
- W2922843924 cites W1964357740 @default.
- W2922843924 cites W1979597003 @default.
- W2922843924 cites W1987949907 @default.
- W2922843924 cites W1995341919 @default.
- W2922843924 cites W2017090906 @default.
- W2922843924 cites W2022887954 @default.
- W2922843924 cites W2031678705 @default.
- W2922843924 cites W2032566663 @default.
- W2922843924 cites W2035012112 @default.
- W2922843924 cites W2035045158 @default.
- W2922843924 cites W2042287734 @default.
- W2922843924 cites W2046836886 @default.
- W2922843924 cites W2052416604 @default.
- W2922843924 cites W2058126953 @default.
- W2922843924 cites W2075156175 @default.
- W2922843924 cites W2119821739 @default.
- W2922843924 cites W2128944579 @default.
- W2922843924 cites W2130132521 @default.
- W2922843924 cites W2150589569 @default.
- W2922843924 cites W2151256009 @default.
- W2922843924 cites W2153095534 @default.
- W2922843924 cites W2158585626 @default.
- W2922843924 cites W2158994553 @default.
- W2922843924 cites W2161336914 @default.
- W2922843924 cites W2346297907 @default.
- W2922843924 cites W2469774645 @default.
- W2922843924 cites W2550148330 @default.
- W2922843924 cites W2557377372 @default.
- W2922843924 cites W2582743722 @default.
- W2922843924 cites W2612025376 @default.
- W2922843924 cites W3121926921 @default.
- W2922843924 doi "https://doi.org/10.24849/j.geot.2019.145.01" @default.
- W2922843924 hasPublicationYear "2019" @default.
- W2922843924 type Work @default.
- W2922843924 sameAs 2922843924 @default.
- W2922843924 citedByCount "0" @default.
- W2922843924 crossrefType "journal-article" @default.
- W2922843924 hasAuthorship W2922843924A5008664913 @default.
- W2922843924 hasAuthorship W2922843924A5016423611 @default.
- W2922843924 hasAuthorship W2922843924A5021727213 @default.
- W2922843924 hasAuthorship W2922843924A5062036279 @default.
- W2922843924 hasAuthorship W2922843924A5074348997 @default.
- W2922843924 hasBestOaLocation W29228439241 @default.
- W2922843924 hasConcept C119857082 @default.
- W2922843924 hasConcept C12267149 @default.
- W2922843924 hasConcept C127413603 @default.
- W2922843924 hasConcept C132976073 @default.
- W2922843924 hasConcept C159390177 @default.
- W2922843924 hasConcept C159750122 @default.
- W2922843924 hasConcept C159985019 @default.
- W2922843924 hasConcept C187320778 @default.
- W2922843924 hasConcept C192562407 @default.
- W2922843924 hasConcept C24939127 @default.
- W2922843924 hasConcept C39432304 @default.
- W2922843924 hasConcept C41008148 @default.
- W2922843924 hasConcept C45804977 @default.
- W2922843924 hasConcept C50644808 @default.
- W2922843924 hasConcept C523993062 @default.
- W2922843924 hasConceptScore W2922843924C119857082 @default.
- W2922843924 hasConceptScore W2922843924C12267149 @default.
- W2922843924 hasConceptScore W2922843924C127413603 @default.
- W2922843924 hasConceptScore W2922843924C132976073 @default.
- W2922843924 hasConceptScore W2922843924C159390177 @default.
- W2922843924 hasConceptScore W2922843924C159750122 @default.
- W2922843924 hasConceptScore W2922843924C159985019 @default.
- W2922843924 hasConceptScore W2922843924C187320778 @default.
- W2922843924 hasConceptScore W2922843924C192562407 @default.
- W2922843924 hasConceptScore W2922843924C24939127 @default.
- W2922843924 hasConceptScore W2922843924C39432304 @default.
- W2922843924 hasConceptScore W2922843924C41008148 @default.
- W2922843924 hasConceptScore W2922843924C45804977 @default.
- W2922843924 hasConceptScore W2922843924C50644808 @default.
- W2922843924 hasConceptScore W2922843924C523993062 @default.
- W2922843924 hasLocation W29228439241 @default.
- W2922843924 hasLocation W29228439242 @default.
- W2922843924 hasOpenAccess W2922843924 @default.
- W2922843924 hasPrimaryLocation W29228439241 @default.
- W2922843924 hasRelatedWork W2084779923 @default.
- W2922843924 hasRelatedWork W2121393587 @default.
- W2922843924 hasRelatedWork W2806504660 @default.
- W2922843924 hasRelatedWork W2937631562 @default.
- W2922843924 hasRelatedWork W3136979370 @default.
- W2922843924 hasRelatedWork W3194539120 @default.
- W2922843924 hasRelatedWork W3195168932 @default.
- W2922843924 hasRelatedWork W4205478082 @default.
- W2922843924 hasRelatedWork W4205958290 @default.