Matches in SemOpenAlex for { <https://semopenalex.org/work/W2922894502> ?p ?o ?g. }
Showing items 1 to 93 of
93
with 100 items per page.
- W2922894502 endingPage "317" @default.
- W2922894502 startingPage "317" @default.
- W2922894502 abstract "The population balance equation (PBE) is the main governing equation for modeling dynamic crystallization behavior. In the view of mathematics, PBE is a convection–reaction equation whose strong hyperbolic property may challenge numerical methods. In order to weaken the hyperbolic property of PBE, a diffusive term was added in this work. Here, the Chebyshev spectral collocation method was introduced to solve the PBE and to achieve accurate crystal size distribution (CSD). Three numerical examples are presented, namely size-independent growth, size-dependent growth in a batch process, and with nucleation, and size-dependent growth in a continuous process. Through comparing the results with the numerical results obtained via the second-order upwind method and the HR-van method, the high accuracy of Chebyshev spectral collocation method was proven. Moreover, the diffusive term is also discussed in three numerical examples. The results show that, in the case of size-independent growth (PBE is a convection equation), the diffusive term should be added, and the coefficient of the diffusive term is recommended as 2G × 10−3 to G × 10−2, where G is the crystal growth rate." @default.
- W2922894502 created "2019-04-01" @default.
- W2922894502 creator A5087695521 @default.
- W2922894502 date "2019-03-28" @default.
- W2922894502 modified "2023-10-14" @default.
- W2922894502 title "Chebyshev Spectral Collocation Method for Population Balance Equation in Crystallization" @default.
- W2922894502 cites W1970404892 @default.
- W2922894502 cites W1986296935 @default.
- W2922894502 cites W1991081084 @default.
- W2922894502 cites W2002115571 @default.
- W2922894502 cites W2008220241 @default.
- W2922894502 cites W2016659038 @default.
- W2922894502 cites W2062949931 @default.
- W2922894502 cites W2092074614 @default.
- W2922894502 cites W2123189127 @default.
- W2922894502 cites W2128510985 @default.
- W2922894502 cites W2164677588 @default.
- W2922894502 cites W2252660423 @default.
- W2922894502 cites W2318829768 @default.
- W2922894502 cites W2583142015 @default.
- W2922894502 cites W2791521517 @default.
- W2922894502 cites W2896662829 @default.
- W2922894502 cites W2905473109 @default.
- W2922894502 cites W603568662 @default.
- W2922894502 doi "https://doi.org/10.3390/math7040317" @default.
- W2922894502 hasPublicationYear "2019" @default.
- W2922894502 type Work @default.
- W2922894502 sameAs 2922894502 @default.
- W2922894502 citedByCount "0" @default.
- W2922894502 crossrefType "journal-article" @default.
- W2922894502 hasAuthorship W2922894502A5087695521 @default.
- W2922894502 hasBestOaLocation W29228945021 @default.
- W2922894502 hasConcept C114609681 @default.
- W2922894502 hasConcept C119857082 @default.
- W2922894502 hasConcept C121332964 @default.
- W2922894502 hasConcept C134306372 @default.
- W2922894502 hasConcept C144024400 @default.
- W2922894502 hasConcept C149923435 @default.
- W2922894502 hasConcept C18762648 @default.
- W2922894502 hasConcept C2126413 @default.
- W2922894502 hasConcept C21424316 @default.
- W2922894502 hasConcept C23463724 @default.
- W2922894502 hasConcept C2780041671 @default.
- W2922894502 hasConcept C28826006 @default.
- W2922894502 hasConcept C2908647359 @default.
- W2922894502 hasConcept C33923547 @default.
- W2922894502 hasConcept C41008148 @default.
- W2922894502 hasConcept C51544822 @default.
- W2922894502 hasConcept C61048295 @default.
- W2922894502 hasConcept C78045399 @default.
- W2922894502 hasConcept C80023036 @default.
- W2922894502 hasConcept C97355855 @default.
- W2922894502 hasConceptScore W2922894502C114609681 @default.
- W2922894502 hasConceptScore W2922894502C119857082 @default.
- W2922894502 hasConceptScore W2922894502C121332964 @default.
- W2922894502 hasConceptScore W2922894502C134306372 @default.
- W2922894502 hasConceptScore W2922894502C144024400 @default.
- W2922894502 hasConceptScore W2922894502C149923435 @default.
- W2922894502 hasConceptScore W2922894502C18762648 @default.
- W2922894502 hasConceptScore W2922894502C2126413 @default.
- W2922894502 hasConceptScore W2922894502C21424316 @default.
- W2922894502 hasConceptScore W2922894502C23463724 @default.
- W2922894502 hasConceptScore W2922894502C2780041671 @default.
- W2922894502 hasConceptScore W2922894502C28826006 @default.
- W2922894502 hasConceptScore W2922894502C2908647359 @default.
- W2922894502 hasConceptScore W2922894502C33923547 @default.
- W2922894502 hasConceptScore W2922894502C41008148 @default.
- W2922894502 hasConceptScore W2922894502C51544822 @default.
- W2922894502 hasConceptScore W2922894502C61048295 @default.
- W2922894502 hasConceptScore W2922894502C78045399 @default.
- W2922894502 hasConceptScore W2922894502C80023036 @default.
- W2922894502 hasConceptScore W2922894502C97355855 @default.
- W2922894502 hasIssue "4" @default.
- W2922894502 hasLocation W29228945021 @default.
- W2922894502 hasOpenAccess W2922894502 @default.
- W2922894502 hasPrimaryLocation W29228945021 @default.
- W2922894502 hasRelatedWork W1848947320 @default.
- W2922894502 hasRelatedWork W1992265558 @default.
- W2922894502 hasRelatedWork W2030223859 @default.
- W2922894502 hasRelatedWork W2081738893 @default.
- W2922894502 hasRelatedWork W2113425122 @default.
- W2922894502 hasRelatedWork W2772500265 @default.
- W2922894502 hasRelatedWork W2794751236 @default.
- W2922894502 hasRelatedWork W2922894502 @default.
- W2922894502 hasRelatedWork W3021576674 @default.
- W2922894502 hasRelatedWork W578875527 @default.
- W2922894502 hasVolume "7" @default.
- W2922894502 isParatext "false" @default.
- W2922894502 isRetracted "false" @default.
- W2922894502 magId "2922894502" @default.
- W2922894502 workType "article" @default.