Matches in SemOpenAlex for { <https://semopenalex.org/work/W2922979417> ?p ?o ?g. }
Showing items 1 to 76 of
76
with 100 items per page.
- W2922979417 abstract "Abstract Young's modulus and Poisson's ratio describe the elastic behavior of rock. It is extremely important to determine these parameters in order to minimize the risk associated with the oil and gas well engineering. The estimation helps in several areas of drilling and production such as well placement optimization, design of completions, mud weight calculations, and hydraulic fracture geometry. Each one of these factors play a part in maximizing the recovery of hydrocarbons and in taking crucial decisions for an appropriate field development strategy. Poisson's ratio is second most important parameter in understanding the elastic behavior of the rock and plays a critical role in almost all processes such as drilling, reservoir simulation, and production. It is an essential component in geomechanical earth model (GEM). The Poisson's ratio is estimated based on empirical models and artificial intelligence models. These models are construction from data that has different types of uncertainties. This paper presents an Artificial Neural Network (ANN) as well as Fuzzy Logic Type-2 (FLT2) approach for prediction of static Poisson's ratio. FLT2 is able to incorporate the uncertainties in measurements and still give a robust solution to a given problem. Well log data is used as input and laboratory determined static Poisson's ratio is used as output in the artificial intelligence (AI) tool. The data were collected from a range of experiments conducted on carbonate rocks covering a wide range of input and output values. The model takes care of uncertainties in the input and output data and is therefore a better approach in establishing a relationship between them and in predicting static Poisson's ratio for new input data." @default.
- W2922979417 created "2019-04-01" @default.
- W2922979417 creator A5053834729 @default.
- W2922979417 date "2019-03-22" @default.
- W2922979417 modified "2023-09-24" @default.
- W2922979417 title "Prediction of Poisson's Ratio for Carbonate Rocks Using ANN and Fuzzy Logic Type-2 Approaches" @default.
- W2922979417 cites W1985961835 @default.
- W2922979417 cites W2005258552 @default.
- W2922979417 cites W2010035147 @default.
- W2922979417 cites W2010136721 @default.
- W2922979417 cites W2049286683 @default.
- W2922979417 cites W2054979538 @default.
- W2922979417 cites W2061953071 @default.
- W2922979417 cites W2084944775 @default.
- W2922979417 cites W2101927907 @default.
- W2922979417 cites W2136922672 @default.
- W2922979417 cites W1973977895 @default.
- W2922979417 doi "https://doi.org/10.2523/iptc-19365-ms" @default.
- W2922979417 hasPublicationYear "2019" @default.
- W2922979417 type Work @default.
- W2922979417 sameAs 2922979417 @default.
- W2922979417 citedByCount "3" @default.
- W2922979417 countsByYear W29229794172020 @default.
- W2922979417 countsByYear W29229794172021 @default.
- W2922979417 countsByYear W29229794172023 @default.
- W2922979417 crossrefType "proceedings-article" @default.
- W2922979417 hasAuthorship W2922979417A5053834729 @default.
- W2922979417 hasConcept C100906024 @default.
- W2922979417 hasConcept C105795698 @default.
- W2922979417 hasConcept C126255220 @default.
- W2922979417 hasConcept C127313418 @default.
- W2922979417 hasConcept C127413603 @default.
- W2922979417 hasConcept C146978453 @default.
- W2922979417 hasConcept C149505630 @default.
- W2922979417 hasConcept C154945302 @default.
- W2922979417 hasConcept C193867417 @default.
- W2922979417 hasConcept C204323151 @default.
- W2922979417 hasConcept C2524010 @default.
- W2922979417 hasConcept C33923547 @default.
- W2922979417 hasConcept C41008148 @default.
- W2922979417 hasConcept C50644808 @default.
- W2922979417 hasConcept C58166 @default.
- W2922979417 hasConcept C78762247 @default.
- W2922979417 hasConceptScore W2922979417C100906024 @default.
- W2922979417 hasConceptScore W2922979417C105795698 @default.
- W2922979417 hasConceptScore W2922979417C126255220 @default.
- W2922979417 hasConceptScore W2922979417C127313418 @default.
- W2922979417 hasConceptScore W2922979417C127413603 @default.
- W2922979417 hasConceptScore W2922979417C146978453 @default.
- W2922979417 hasConceptScore W2922979417C149505630 @default.
- W2922979417 hasConceptScore W2922979417C154945302 @default.
- W2922979417 hasConceptScore W2922979417C193867417 @default.
- W2922979417 hasConceptScore W2922979417C204323151 @default.
- W2922979417 hasConceptScore W2922979417C2524010 @default.
- W2922979417 hasConceptScore W2922979417C33923547 @default.
- W2922979417 hasConceptScore W2922979417C41008148 @default.
- W2922979417 hasConceptScore W2922979417C50644808 @default.
- W2922979417 hasConceptScore W2922979417C58166 @default.
- W2922979417 hasConceptScore W2922979417C78762247 @default.
- W2922979417 hasLocation W29229794171 @default.
- W2922979417 hasOpenAccess W2922979417 @default.
- W2922979417 hasPrimaryLocation W29229794171 @default.
- W2922979417 hasRelatedWork W1961280147 @default.
- W2922979417 hasRelatedWork W1976221312 @default.
- W2922979417 hasRelatedWork W2142089924 @default.
- W2922979417 hasRelatedWork W2800999629 @default.
- W2922979417 hasRelatedWork W2883153962 @default.
- W2922979417 hasRelatedWork W3059089888 @default.
- W2922979417 hasRelatedWork W3176823589 @default.
- W2922979417 hasRelatedWork W3202372417 @default.
- W2922979417 hasRelatedWork W4289843079 @default.
- W2922979417 hasRelatedWork W66585995 @default.
- W2922979417 isParatext "false" @default.
- W2922979417 isRetracted "false" @default.
- W2922979417 magId "2922979417" @default.
- W2922979417 workType "article" @default.