Matches in SemOpenAlex for { <https://semopenalex.org/work/W2923009478> ?p ?o ?g. }
- W2923009478 abstract "SUMMARY We present a new approach to estimate 3-D seismic velocities along a target interface. This approach uses an artificial neural network trained with user-supplied geological and geophysical input features derived from both a 3-D seismic reflection volume and a 2-D wide-angle seismic profile that were acquired from the Galicia margin, offshore Spain. The S-reflector detachment fault was selected as the interface of interest. The neural network in the form of a multilayer perceptron was employed with an autoencoder and a regression layer. The autoencoder was trained using a set of input features from the 3-D reflection volume. This set of features included the reflection amplitude and instantaneous frequency at the interface of interest, time-thicknesses of overlying major layers and ratios of major layer time-thicknesses to the total time-depth of the interface. The regression model was trained to estimate the seismic velocities of the crystalline basement and mantle from these features. The ‘true’ velocities were obtained from an independent full-waveform inversion along a 2-D wide-angle seismic profile, contained within the 3-D data set. The autoencoder compressed the vector of inputs into a lower dimensional space, then the regression layer was trained in the lower dimensional space to estimate velocities above and below the targeted interface. This model was trained on 50 networks with different initializations. A total of 37 networks reached minimum achievable error of 2 per cent. The low standard deviation (<300 m s−1) between different networks and low errors on velocity estimations demonstrate that the input features were sufficient to capture variations in the velocity above and below the targeted S-reflector. This regression model was then applied to the 3-D reflection volume where velocities were predicted over an area of ∼400 km2. This approach provides an alternative way to obtain velocities across a 3-D seismic survey from a deep non-reflective lithology (e.g. upper mantle) , where conventional reflection velocity estimations can be unreliable." @default.
- W2923009478 created "2019-04-01" @default.
- W2923009478 creator A5007128260 @default.
- W2923009478 creator A5014954758 @default.
- W2923009478 creator A5016367045 @default.
- W2923009478 creator A5052900681 @default.
- W2923009478 date "2019-03-19" @default.
- W2923009478 modified "2023-09-26" @default.
- W2923009478 title "Interface-targeted seismic velocity estimation using machine learning" @default.
- W2923009478 cites W1493110714 @default.
- W2923009478 cites W157162552 @default.
- W2923009478 cites W1968735445 @default.
- W2923009478 cites W1969419074 @default.
- W2923009478 cites W1975852474 @default.
- W2923009478 cites W1977177161 @default.
- W2923009478 cites W1982667385 @default.
- W2923009478 cites W1988115241 @default.
- W2923009478 cites W1989946131 @default.
- W2923009478 cites W2003207592 @default.
- W2923009478 cites W2007061024 @default.
- W2923009478 cites W2028070629 @default.
- W2923009478 cites W2043003990 @default.
- W2923009478 cites W2046746807 @default.
- W2923009478 cites W2053527306 @default.
- W2923009478 cites W2054283077 @default.
- W2923009478 cites W2057854579 @default.
- W2923009478 cites W2084488110 @default.
- W2923009478 cites W2088507450 @default.
- W2923009478 cites W2100495367 @default.
- W2923009478 cites W2119288937 @default.
- W2923009478 cites W2127340088 @default.
- W2923009478 cites W2129166366 @default.
- W2923009478 cites W2131846645 @default.
- W2923009478 cites W2140554217 @default.
- W2923009478 cites W2167727917 @default.
- W2923009478 cites W2196983547 @default.
- W2923009478 cites W2255143115 @default.
- W2923009478 cites W22650424 @default.
- W2923009478 cites W2292005431 @default.
- W2923009478 cites W2337264956 @default.
- W2923009478 cites W2592421213 @default.
- W2923009478 cites W2592517375 @default.
- W2923009478 cites W2593069605 @default.
- W2923009478 cites W2763150011 @default.
- W2923009478 cites W2800469757 @default.
- W2923009478 cites W2886320660 @default.
- W2923009478 cites W4236430992 @default.
- W2923009478 cites W4247944605 @default.
- W2923009478 cites W571218514 @default.
- W2923009478 cites W79952916 @default.
- W2923009478 doi "https://doi.org/10.1093/gji/ggz142" @default.
- W2923009478 hasPublicationYear "2019" @default.
- W2923009478 type Work @default.
- W2923009478 sameAs 2923009478 @default.
- W2923009478 citedByCount "3" @default.
- W2923009478 countsByYear W29230094782019 @default.
- W2923009478 countsByYear W29230094782020 @default.
- W2923009478 countsByYear W29230094782021 @default.
- W2923009478 crossrefType "journal-article" @default.
- W2923009478 hasAuthorship W2923009478A5007128260 @default.
- W2923009478 hasAuthorship W2923009478A5014954758 @default.
- W2923009478 hasAuthorship W2923009478A5016367045 @default.
- W2923009478 hasAuthorship W2923009478A5052900681 @default.
- W2923009478 hasBestOaLocation W29230094781 @default.
- W2923009478 hasConcept C101738243 @default.
- W2923009478 hasConcept C113843644 @default.
- W2923009478 hasConcept C11413529 @default.
- W2923009478 hasConcept C120665830 @default.
- W2923009478 hasConcept C121332964 @default.
- W2923009478 hasConcept C127313418 @default.
- W2923009478 hasConcept C129307140 @default.
- W2923009478 hasConcept C154945302 @default.
- W2923009478 hasConcept C157915830 @default.
- W2923009478 hasConcept C159737794 @default.
- W2923009478 hasConcept C165205528 @default.
- W2923009478 hasConcept C173608175 @default.
- W2923009478 hasConcept C180205008 @default.
- W2923009478 hasConcept C197424946 @default.
- W2923009478 hasConcept C199360897 @default.
- W2923009478 hasConcept C2524010 @default.
- W2923009478 hasConcept C2781294565 @default.
- W2923009478 hasConcept C33923547 @default.
- W2923009478 hasConcept C39267094 @default.
- W2923009478 hasConcept C41008148 @default.
- W2923009478 hasConcept C50644808 @default.
- W2923009478 hasConcept C554190296 @default.
- W2923009478 hasConcept C58489278 @default.
- W2923009478 hasConcept C60908668 @default.
- W2923009478 hasConcept C65682993 @default.
- W2923009478 hasConcept C76155785 @default.
- W2923009478 hasConceptScore W2923009478C101738243 @default.
- W2923009478 hasConceptScore W2923009478C113843644 @default.
- W2923009478 hasConceptScore W2923009478C11413529 @default.
- W2923009478 hasConceptScore W2923009478C120665830 @default.
- W2923009478 hasConceptScore W2923009478C121332964 @default.
- W2923009478 hasConceptScore W2923009478C127313418 @default.
- W2923009478 hasConceptScore W2923009478C129307140 @default.
- W2923009478 hasConceptScore W2923009478C154945302 @default.
- W2923009478 hasConceptScore W2923009478C157915830 @default.
- W2923009478 hasConceptScore W2923009478C159737794 @default.