Matches in SemOpenAlex for { <https://semopenalex.org/work/W2923133717> ?p ?o ?g. }
- W2923133717 endingPage "72" @default.
- W2923133717 startingPage "59" @default.
- W2923133717 abstract "Convolutional neural networks (CNNs) have been widely used to improve the accuracy of polarimetric synthetic aperture radar (PolSAR) image classification. However, in most studies, the difference between PolSAR images and optical images is rarely considered. Most of the existing CNNs are not tailored for the task of PolSAR image classification, in which complex-valued PolSAR data have been simply equated to real-valued data to fit the optical image processing architectures and avoid complex-valued operations. This is one of the reasons CNNs unable to perform their full capabilities in PolSAR classification. To solve the above problem, the objective of this paper is to develop a tailored CNN framework for PolSAR image classification, which can be implemented from two aspects: Seeking a better form of PolSAR data as the input of CNNs and building matched CNN architectures based on the proposed input form. In this paper, considering the properties of complex-valued numbers, amplitude and phase of complex-valued PolSAR data are extracted as the input for the first time to maintain the integrity of original information while avoiding immature complex-valued operations. Then, a multi-task CNN (MCNN) architecture is proposed to match the improved input form and achieve better classification results. Furthermore, depthwise separable convolution is introduced to the proposed architecture in order to better extract information from the phase information. Experiments on three PolSAR benchmark datasets not only prove that using amplitude and phase as the input do contribute to the improvement of PolSAR classification, but also verify the adaptability between the improved input form and the well-designed architectures." @default.
- W2923133717 created "2019-04-01" @default.
- W2923133717 creator A5000588825 @default.
- W2923133717 creator A5052182532 @default.
- W2923133717 creator A5053097929 @default.
- W2923133717 date "2019-11-01" @default.
- W2923133717 modified "2023-10-16" @default.
- W2923133717 title "Efficiently utilizing complex-valued PolSAR image data via a multi-task deep learning framework" @default.
- W2923133717 cites W1901129140 @default.
- W2923133717 cites W1983364832 @default.
- W2923133717 cites W2015695644 @default.
- W2923133717 cites W2029316659 @default.
- W2923133717 cites W2090424610 @default.
- W2923133717 cites W2109255472 @default.
- W2923133717 cites W2112796928 @default.
- W2923133717 cites W2138451337 @default.
- W2923133717 cites W2147800946 @default.
- W2923133717 cites W2345852998 @default.
- W2923133717 cites W2410591237 @default.
- W2923133717 cites W2492018752 @default.
- W2923133717 cites W2559324447 @default.
- W2923133717 cites W2569272946 @default.
- W2923133717 cites W2591879105 @default.
- W2923133717 cites W2607333215 @default.
- W2923133717 cites W2744110496 @default.
- W2923133717 cites W2754361766 @default.
- W2923133717 cites W2766299269 @default.
- W2923133717 cites W2781778455 @default.
- W2923133717 cites W2789584428 @default.
- W2923133717 cites W2792862011 @default.
- W2923133717 cites W2793182997 @default.
- W2923133717 cites W2793189836 @default.
- W2923133717 cites W2794398988 @default.
- W2923133717 cites W2819744022 @default.
- W2923133717 cites W2883305476 @default.
- W2923133717 cites W2897760800 @default.
- W2923133717 cites W2906341063 @default.
- W2923133717 cites W2912714424 @default.
- W2923133717 cites W2914539021 @default.
- W2923133717 cites W2919115771 @default.
- W2923133717 cites W2959574828 @default.
- W2923133717 cites W2963163009 @default.
- W2923133717 cites W2963881378 @default.
- W2923133717 cites W4239510810 @default.
- W2923133717 cites W639708223 @default.
- W2923133717 doi "https://doi.org/10.1016/j.isprsjprs.2019.09.002" @default.
- W2923133717 hasPublicationYear "2019" @default.
- W2923133717 type Work @default.
- W2923133717 sameAs 2923133717 @default.
- W2923133717 citedByCount "18" @default.
- W2923133717 countsByYear W29231337172019 @default.
- W2923133717 countsByYear W29231337172020 @default.
- W2923133717 countsByYear W29231337172021 @default.
- W2923133717 countsByYear W29231337172022 @default.
- W2923133717 countsByYear W29231337172023 @default.
- W2923133717 crossrefType "journal-article" @default.
- W2923133717 hasAuthorship W2923133717A5000588825 @default.
- W2923133717 hasAuthorship W2923133717A5052182532 @default.
- W2923133717 hasAuthorship W2923133717A5053097929 @default.
- W2923133717 hasBestOaLocation W29231337172 @default.
- W2923133717 hasConcept C115961682 @default.
- W2923133717 hasConcept C13280743 @default.
- W2923133717 hasConcept C153180895 @default.
- W2923133717 hasConcept C154945302 @default.
- W2923133717 hasConcept C162324750 @default.
- W2923133717 hasConcept C185798385 @default.
- W2923133717 hasConcept C187736073 @default.
- W2923133717 hasConcept C205649164 @default.
- W2923133717 hasConcept C2780451532 @default.
- W2923133717 hasConcept C41008148 @default.
- W2923133717 hasConcept C45347329 @default.
- W2923133717 hasConcept C50644808 @default.
- W2923133717 hasConcept C75294576 @default.
- W2923133717 hasConcept C81363708 @default.
- W2923133717 hasConceptScore W2923133717C115961682 @default.
- W2923133717 hasConceptScore W2923133717C13280743 @default.
- W2923133717 hasConceptScore W2923133717C153180895 @default.
- W2923133717 hasConceptScore W2923133717C154945302 @default.
- W2923133717 hasConceptScore W2923133717C162324750 @default.
- W2923133717 hasConceptScore W2923133717C185798385 @default.
- W2923133717 hasConceptScore W2923133717C187736073 @default.
- W2923133717 hasConceptScore W2923133717C205649164 @default.
- W2923133717 hasConceptScore W2923133717C2780451532 @default.
- W2923133717 hasConceptScore W2923133717C41008148 @default.
- W2923133717 hasConceptScore W2923133717C45347329 @default.
- W2923133717 hasConceptScore W2923133717C50644808 @default.
- W2923133717 hasConceptScore W2923133717C75294576 @default.
- W2923133717 hasConceptScore W2923133717C81363708 @default.
- W2923133717 hasFunder F4320321001 @default.
- W2923133717 hasFunder F4320327472 @default.
- W2923133717 hasLocation W29231337171 @default.
- W2923133717 hasLocation W29231337172 @default.
- W2923133717 hasLocation W29231337173 @default.
- W2923133717 hasOpenAccess W2923133717 @default.
- W2923133717 hasPrimaryLocation W29231337171 @default.
- W2923133717 hasRelatedWork W2770149305 @default.
- W2923133717 hasRelatedWork W2911497689 @default.
- W2923133717 hasRelatedWork W2952813363 @default.