Matches in SemOpenAlex for { <https://semopenalex.org/work/W2923165877> ?p ?o ?g. }
- W2923165877 endingPage "1423" @default.
- W2923165877 startingPage "1413" @default.
- W2923165877 abstract "Background FLAIR (fluid attenuated inversion recovery) imaging via synthetic MRI methods leads to artifacts in the brain, which can cause diagnostic limitations. The main sources of the artifacts are attributed to the partial volume effect and flow, which are difficult to correct by analytical modeling. In this study, a deep learning (DL)‐based synthetic FLAIR method was developed, which does not require analytical modeling of the signal. Purpose To correct artifacts in synthetic FLAIR using a DL method. Study Type Retrospective. Subjects A total of 80 subjects with clinical indications (60.6 ± 16.7 years, 38 males, 42 females) were divided into three groups: a training set (56 subjects, 62.1 ± 14.8 years, 25 males, 31 females), a validation set (1 subject, 62 years, male), and the testing set (23 subjects, 57.3 ± 20.4 years, 13 males, 10 females). Field Strength/Sequence 3 T MRI using a multiple‐dynamic multiple‐echo acquisition (MDME) sequence for synthetic MRI and a conventional FLAIR sequence. Assessment Normalized root mean square (NRMSE) and structural similarity (SSIM) were computed for uncorrected synthetic FLAIR and DL‐corrected FLAIR. In addition, three neuroradiologists scored the three FLAIR datasets blindly, evaluating image quality and artifacts for sulci/periventricular and intraventricular/cistern space regions. Statistical Tests Pairwise Student's t ‐tests and a Wilcoxon test were performed. Results For quantitative assessment, NRMSE improved from 4.2% to 2.9% ( P < 0.0001) and SSIM improved from 0.85 to 0.93 ( P < 0.0001). Additionally, NRMSE values significantly improved from 1.58% to 1.26% ( P < 0.001), 3.1% to 1.5% ( P < 0.0001), and 2.7% to 1.4% ( P < 0.0001) in white matter, gray matter, and cerebral spinal fluid (CSF) regions, respectively, when using DL‐corrected FLAIR. For qualitative assessment, DL correction achieved improved overall quality, fewer artifacts in sulci and periventricular regions, and in intraventricular and cistern space regions. Data Conclusion The DL approach provides a promising method to correct artifacts in synthetic FLAIR. Level of Evidence : 4 Technical Efficacy : Stage 1 J. Magn. Reson. Imaging 2019;50:1413–1423." @default.
- W2923165877 created "2019-04-01" @default.
- W2923165877 creator A5000004121 @default.
- W2923165877 creator A5005027857 @default.
- W2923165877 creator A5010812171 @default.
- W2923165877 creator A5013212963 @default.
- W2923165877 creator A5035548631 @default.
- W2923165877 creator A5053841007 @default.
- W2923165877 creator A5058544703 @default.
- W2923165877 creator A5059760054 @default.
- W2923165877 creator A5068475746 @default.
- W2923165877 date "2019-03-18" @default.
- W2923165877 modified "2023-10-12" @default.
- W2923165877 title "Data‐driven synthetic MRI FLAIR artifact correction via deep neural network" @default.
- W2923165877 cites W2024932638 @default.
- W2923165877 cites W2098743356 @default.
- W2923165877 cites W2123328938 @default.
- W2923165877 cites W2136573752 @default.
- W2923165877 cites W2144288697 @default.
- W2923165877 cites W2148726987 @default.
- W2923165877 cites W2261527505 @default.
- W2923165877 cites W2320583954 @default.
- W2923165877 cites W2328247767 @default.
- W2923165877 cites W2331128040 @default.
- W2923165877 cites W2489282815 @default.
- W2923165877 cites W2533800772 @default.
- W2923165877 cites W2559597482 @default.
- W2923165877 cites W2559964732 @default.
- W2923165877 cites W2592511109 @default.
- W2923165877 cites W2608930246 @default.
- W2923165877 cites W2611467245 @default.
- W2923165877 cites W2743780012 @default.
- W2923165877 cites W2754132686 @default.
- W2923165877 cites W2777802649 @default.
- W2923165877 cites W2789565832 @default.
- W2923165877 cites W2791695392 @default.
- W2923165877 cites W2800950215 @default.
- W2923165877 cites W2804263814 @default.
- W2923165877 cites W2963176524 @default.
- W2923165877 cites W2963495494 @default.
- W2923165877 cites W2964308363 @default.
- W2923165877 cites W3101123465 @default.
- W2923165877 cites W4235770099 @default.
- W2923165877 doi "https://doi.org/10.1002/jmri.26712" @default.
- W2923165877 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30884007" @default.
- W2923165877 hasPublicationYear "2019" @default.
- W2923165877 type Work @default.
- W2923165877 sameAs 2923165877 @default.
- W2923165877 citedByCount "16" @default.
- W2923165877 countsByYear W29231658772019 @default.
- W2923165877 countsByYear W29231658772020 @default.
- W2923165877 countsByYear W29231658772021 @default.
- W2923165877 countsByYear W29231658772022 @default.
- W2923165877 crossrefType "journal-article" @default.
- W2923165877 hasAuthorship W2923165877A5000004121 @default.
- W2923165877 hasAuthorship W2923165877A5005027857 @default.
- W2923165877 hasAuthorship W2923165877A5010812171 @default.
- W2923165877 hasAuthorship W2923165877A5013212963 @default.
- W2923165877 hasAuthorship W2923165877A5035548631 @default.
- W2923165877 hasAuthorship W2923165877A5053841007 @default.
- W2923165877 hasAuthorship W2923165877A5058544703 @default.
- W2923165877 hasAuthorship W2923165877A5059760054 @default.
- W2923165877 hasAuthorship W2923165877A5068475746 @default.
- W2923165877 hasConcept C101070640 @default.
- W2923165877 hasConcept C126322002 @default.
- W2923165877 hasConcept C126838900 @default.
- W2923165877 hasConcept C12868164 @default.
- W2923165877 hasConcept C143409427 @default.
- W2923165877 hasConcept C153180895 @default.
- W2923165877 hasConcept C154945302 @default.
- W2923165877 hasConcept C206041023 @default.
- W2923165877 hasConcept C2779010991 @default.
- W2923165877 hasConcept C2989005 @default.
- W2923165877 hasConcept C41008148 @default.
- W2923165877 hasConcept C71924100 @default.
- W2923165877 hasConceptScore W2923165877C101070640 @default.
- W2923165877 hasConceptScore W2923165877C126322002 @default.
- W2923165877 hasConceptScore W2923165877C126838900 @default.
- W2923165877 hasConceptScore W2923165877C12868164 @default.
- W2923165877 hasConceptScore W2923165877C143409427 @default.
- W2923165877 hasConceptScore W2923165877C153180895 @default.
- W2923165877 hasConceptScore W2923165877C154945302 @default.
- W2923165877 hasConceptScore W2923165877C206041023 @default.
- W2923165877 hasConceptScore W2923165877C2779010991 @default.
- W2923165877 hasConceptScore W2923165877C2989005 @default.
- W2923165877 hasConceptScore W2923165877C41008148 @default.
- W2923165877 hasConceptScore W2923165877C71924100 @default.
- W2923165877 hasFunder F4320322120 @default.
- W2923165877 hasIssue "5" @default.
- W2923165877 hasLocation W29231658771 @default.
- W2923165877 hasLocation W29231658772 @default.
- W2923165877 hasOpenAccess W2923165877 @default.
- W2923165877 hasPrimaryLocation W29231658771 @default.
- W2923165877 hasRelatedWork W2131742827 @default.
- W2923165877 hasRelatedWork W2356247871 @default.
- W2923165877 hasRelatedWork W2364564193 @default.
- W2923165877 hasRelatedWork W2373716292 @default.
- W2923165877 hasRelatedWork W2379466970 @default.