Matches in SemOpenAlex for { <https://semopenalex.org/work/W2923176871> ?p ?o ?g. }
- W2923176871 endingPage "12" @default.
- W2923176871 startingPage "1" @default.
- W2923176871 abstract "Explicit information of tree species composition provides valuable materials for the management of forests and urban greenness. In recent years, scholars have employed multiple features in tree species classification, so as to identify them from different perspectives. Most studies use different features to classify the target tree species in a specific growth environment and evaluate the classification results. However, the data matching problems have not been discussed; besides, the contributions of different features and the performance of different classifiers have not been systematically compared. Remote sensing technology of the integrated sensors helps to realize the purpose with high time efficiency and low cost. Benefiting from an integrated system which simultaneously acquired the hyperspectral images, LiDAR waveform, and point clouds, this study made a systematic research on different features and classifiers in pixel-wised tree species classification. We extracted the crown height model (CHM) from the airborne LiDAR device and multiple features from the hyperspectral images, including Gabor textural features, gray-level co-occurrence matrix (GLCM) textural features, and vegetation indices. Different experimental schemes were tested at two study areas with different numbers and configurations of tree species. The experimental results demonstrated the effectiveness of Gabor textural features in specific tree species classification in both homogeneous and heterogeneous growing environments. The GLCM textural features did not improve the classification accuracy of tree species when being combined with spectral features. The CHM feature made more contributions to discriminating tree species than vegetation indices. Different classifiers exhibited similar performances, and support vector machine (SVM) produced the highest overall accuracy among all the classifiers." @default.
- W2923176871 created "2019-04-01" @default.
- W2923176871 creator A5010307809 @default.
- W2923176871 creator A5032615847 @default.
- W2923176871 creator A5036019618 @default.
- W2923176871 creator A5047923660 @default.
- W2923176871 creator A5049195511 @default.
- W2923176871 creator A5060318844 @default.
- W2923176871 creator A5068848568 @default.
- W2923176871 date "2019-03-26" @default.
- W2923176871 modified "2023-10-17" @default.
- W2923176871 title "Tree Species Classification by Employing Multiple Features Acquired from Integrated Sensors" @default.
- W2923176871 cites W1496825334 @default.
- W2923176871 cites W1502342315 @default.
- W2923176871 cites W1942861091 @default.
- W2923176871 cites W195150910 @default.
- W2923176871 cites W1967621805 @default.
- W2923176871 cites W1979716763 @default.
- W2923176871 cites W1992874035 @default.
- W2923176871 cites W2008233110 @default.
- W2923176871 cites W2018732570 @default.
- W2923176871 cites W2019338222 @default.
- W2923176871 cites W2019965926 @default.
- W2923176871 cites W2020326148 @default.
- W2923176871 cites W2030703997 @default.
- W2923176871 cites W2035552593 @default.
- W2923176871 cites W2036061791 @default.
- W2923176871 cites W2041281368 @default.
- W2923176871 cites W2042255844 @default.
- W2923176871 cites W2045757377 @default.
- W2923176871 cites W2049061912 @default.
- W2923176871 cites W2068624850 @default.
- W2923176871 cites W2071128523 @default.
- W2923176871 cites W2073266896 @default.
- W2923176871 cites W2073965141 @default.
- W2923176871 cites W2086762254 @default.
- W2923176871 cites W2117438495 @default.
- W2923176871 cites W2118342735 @default.
- W2923176871 cites W2126326837 @default.
- W2923176871 cites W2134855596 @default.
- W2923176871 cites W2137608957 @default.
- W2923176871 cites W2137839571 @default.
- W2923176871 cites W2137900926 @default.
- W2923176871 cites W2143035263 @default.
- W2923176871 cites W2146611644 @default.
- W2923176871 cites W2150579376 @default.
- W2923176871 cites W2153524210 @default.
- W2923176871 cites W2154624311 @default.
- W2923176871 cites W2163114261 @default.
- W2923176871 cites W2163241395 @default.
- W2923176871 cites W2169119136 @default.
- W2923176871 cites W2169384781 @default.
- W2923176871 cites W2176972851 @default.
- W2923176871 cites W2187475316 @default.
- W2923176871 cites W2207292751 @default.
- W2923176871 cites W2209962445 @default.
- W2923176871 cites W2510536795 @default.
- W2923176871 cites W2581388530 @default.
- W2923176871 cites W2604795894 @default.
- W2923176871 cites W2767814567 @default.
- W2923176871 cites W2770851933 @default.
- W2923176871 cites W2807092502 @default.
- W2923176871 cites W2885085815 @default.
- W2923176871 doi "https://doi.org/10.1155/2019/3247946" @default.
- W2923176871 hasPublicationYear "2019" @default.
- W2923176871 type Work @default.
- W2923176871 sameAs 2923176871 @default.
- W2923176871 citedByCount "12" @default.
- W2923176871 countsByYear W29231768712020 @default.
- W2923176871 countsByYear W29231768712021 @default.
- W2923176871 countsByYear W29231768712022 @default.
- W2923176871 countsByYear W29231768712023 @default.
- W2923176871 crossrefType "journal-article" @default.
- W2923176871 hasAuthorship W2923176871A5010307809 @default.
- W2923176871 hasAuthorship W2923176871A5032615847 @default.
- W2923176871 hasAuthorship W2923176871A5036019618 @default.
- W2923176871 hasAuthorship W2923176871A5047923660 @default.
- W2923176871 hasAuthorship W2923176871A5049195511 @default.
- W2923176871 hasAuthorship W2923176871A5060318844 @default.
- W2923176871 hasAuthorship W2923176871A5068848568 @default.
- W2923176871 hasBestOaLocation W29231768711 @default.
- W2923176871 hasConcept C105795698 @default.
- W2923176871 hasConcept C113174947 @default.
- W2923176871 hasConcept C114614502 @default.
- W2923176871 hasConcept C12267149 @default.
- W2923176871 hasConcept C134306372 @default.
- W2923176871 hasConcept C153180895 @default.
- W2923176871 hasConcept C154945302 @default.
- W2923176871 hasConcept C159078339 @default.
- W2923176871 hasConcept C165064840 @default.
- W2923176871 hasConcept C205649164 @default.
- W2923176871 hasConcept C33923547 @default.
- W2923176871 hasConcept C41008148 @default.
- W2923176871 hasConcept C51399673 @default.
- W2923176871 hasConcept C62649853 @default.
- W2923176871 hasConcept C66882249 @default.
- W2923176871 hasConcept C84525736 @default.
- W2923176871 hasConceptScore W2923176871C105795698 @default.